In epidemiological studies, a common objective is to estimate the distribution of intervals from initiation to endpoints or to compare the distributions of these survival times across two or more well-defined groups. When it is feasible to follow all subjects in a group prospectively, standard techniques of survival analysis can be applied. However, subjects are often identified as having experienced initiation through a cross-sectional study at a specific time point. Consequently, only those who have survived until that time are recruited into the study, whereas those who have not will not be included in this initial recruitment phase and, indeed, will not even be identified.
The intervals from initiation to failure or censoring are well known to be length-biased, meaning that the observed time intervals tend to be longer than those arising from the true underlying failure or censoring distributions. The concept of length-biased distribution finds various applications in the biomedical field, such as in family history and disease, survival and intermediate events, and the latency period of AIDS due to blood transfusion (Gupta and Akman, 1998). Significant work has been done to characterize the relationships between original distributions and their length-biased versions.
If a random variable
The reliability and hazard function of the LBED are given by:
In reliability and survival analysis, there are many situations in which units are removed or lost from experimentation before they are observed, either carelessly or unconsciously. This scenario is referred to as censoring. Recently, work on progressive hybrid censoring (PHC) has become quite popular in life-testing and reliability studies. The PHC scheme can be described as follows. If the first failure is observed (
The estimation of length-biased distributions under censoring schemes has been extensively studied by many researchers. Alemdjrodo and Zhao (2020) considered empirical likelihood inference for the mean residual life with length-biased and right-censored data. Shen
The objective of this paper is to derive the MLE of the unknown parameter, reliability, and hazard function of a LBED based on PHC data. Furthermore, we consider the Bayesian estimators of the unknown parameter, reliability, and hazard function of LBED using flexible priors under PHC data. As Bayesian estimators cannot be obtained in closed form, we provide Bayesian estimates using Lindley’s approximation method. Monte Carlo simulations are conducted to compare the performances among different methods.
The paper is organized as follows. In Section 2, we derive the MLE and confidence interval for the unknown parameter, reliability, and hazard functions under PHC data. In Section 3, we obtain the posterior densities of unknown parameter for this model and derive Bayesian estimators for the unknown parameter, reliability, and hazard functions under the squared error loss function (SELF) and linex loss function (LLF). A numerical study is presented in Section 4. Finally, Section 5 concludes the paper.
In this subsection, we provide the MLE of the unknown parameter, reliability and hazard functions. Consider a randomly selected sample of
where
where
where
where
In this subsection, we obtain the 100(1 −
where
where
These results yield the 100(1 −
where
In order to find the approximate estimates of the variance of reliability and hazard functions, we use the delta method. Then, asymptotically,
where
These results yield the 100(1 −
In this Section, we consider the Bayesian estimation for the parameter, reliability and hazard functions of the LBED under PHC. We obtain the Bayesian estimators under SELF and LLF. Additionally, we assume that the prior distribution of
Thus, the joint density function of
where
Note that (
Using the Lindley’s approximation method, Bayesian estimators of
where
For our problem, we have
where
Now, we compute the Bayesian estimator using Lindley approximation method. First, we estimate
The Bayesian estimator of
Next, we compute the Bayesian estimator of reliability function under LLF. Here, we observe that
The Bayesian estimators of reliability function under SELF is computed likewise. Under SELF, we observe that
Also, we compute the Bayesian estimator of hazard function under LLF. Here, we observe that
The Bayesian estimator of hazard function under SELF is computed likewise. Under SELF, we observe that
Although Lindley approximation method gives Bayesian estimators of the unknown parameter, reliability and hazard functions, it cannot be used to get HPD credible intervals. Therefore, we propose to use the Markov chain Monte Carlo (MCMC) method to obtain Bayesian estimators and also to get HPD credible intervals. To obtain the MCMC samples from the posterior distribution, we use the adaptive Metropolis-Hastings method and consider the normal distribution as the proposal distribution. Let
Then, we can obtain the Bayesian estimators by the MCMC samples as follows.
where N+B is the number of the MCMC samples and B is the burn-in period of the Markov chain. Furthermore, we compute (
In this subsection, we use Monte Carlo simulations to compare the proposed estimators. First of all, we consider various
In each case, we set
In Tables 1
In Table 4, interval estimates for the parameter, reliability, and hazard functions are presented for various
In general, the MSE and bias decrease as the sample size and progressive censored sample size increase. For fixed sample size and progressive censored sample size, the MSE and bias typically decrease as the time
In Tables 1
In order to analyze the real life data set, in this section, we use the proposed estimators in the above section. Lawless (1982) gives the results of a study to investigate the effect of a certain kind of therapy for 30 leukemia patients. After the therapy, patients go into remission for some period of time, the length of which is random. The observed times were 1, 1, 2, 2, 2, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31, 42, 45, 50, 57, 60, 71, 85, 91 weeks. Fattah and Ahmed (2018) indicated that the exponential distribution provides a satisfactory fit. From this data, we take PHC scheme such as Scheme 1:
We observed that Bayesian estimates of the parameter, reliability and hazard functions using LF with
The concept of length-biased distribution finds various applications in biomedical areas such as family history and disease, survival and intermediate events, and the latency period of AIDS due to blood transfusion. Additionally, in biomedical analysis, there are numerous situations where units are removed or lost from experimentation before being observed. Therefore, in this paper, we consider the MLE and Bayesian estimators of the parameter, reliability, and hazard functions of the LBED under the PHC scheme. We derive the Bayesian estimators of the unknown parameter, reliability, and hazard functions based on flexible loss functions. Furthermore, we derive the Bayesian estimators using Lindley’s approximation and the MCMC methods. In particular, the MCMC method is used to obtain the credible interval.
In general, the MSE and bias decrease as the sample size and progressive censored sample size increase. For fixed sample size and progressive censored sample size, generally, the MSE and bias decrease as the time
Among the proposed estimators, we observed that Bayesian estimators are superior to the respective MLE in terms of MSE and bias. Among the Bayesian estimators, we can observe that the Baysian estimators under LLF is more efficient than the Bayesian estimators under SELF in terms of MSE. Also, we observe that the CL of approximate CI is wider than the corresponding CL of HPD credible interval.
Although we focused on the unknown parameter, reliability and hazard functions estimate of the LBED based on PHC scheme, the Bayesian estimation can be applied to any other length biased distributions. The estimation of the parameter, reliability and hazard functions from other length biased distributions based on PHC scheme is of potential interest in future research.
The relative MSEs and biases of parameter estimators with MLE and Bayesian estimators
MSE(bias) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5 | 20 | 14 | (6,0*13) | .0826(.0404) | .0670(.0048) | .0597(−.0629) | .0652(.0338) | .0880(.0949) | .0614(−.0647) | .0783(.0262) |
(0*6,6,0*7) | .0602(.0176) | .0528(.0030) | .0499(−.0582) | .0510(.0198) | .0640(.0678) | .0519(−.0587) | .0617(.0145) | |||
(0*13,6) | .0572(.0300) | .0491(.0025) | .0449(−.0446) | .0495(.0273) | .0625(.0726) | .0455(−.0456) | .0575(.0237) | |||
(3,0*12,3) | .0664(.0328) | .0567(.0034) | .0507(−.0536) | .0558(.0288) | .0723(.0807) | .0515(−.0549) | .0654(.0235) | |||
12 | (8,0*11) | .1183(.0651) | .0738(.0084) | .0742(−.0585) | .0816(.0507) | .1174(.1225) | .0808(−.0590) | .1040(.0440) | ||
(0*5,8,0*6) | .0703(.0246) | .0579(.0035) | .0587(−.0626) | .0594(.0227) | .0738(.0743) | .0597(−.0633) | .0708(.0162) | |||
(0*11,8) | .0666(.0448) | .0495(.0026) | .0495(−.0325) | .0563(.0406) | .0721(.0873) | .0509(−.0329) | .0666(.0386) | |||
(4,0*10,4) | .0846(.0535) | .0597(.0039) | .0588(−.0416) | .0671(.0461) | .0899(.1026) | .0613(−.0422) | .0816(.0425) | |||
10 | (10,0*9) | .1421(.0726) | .0837(.0142) | .0826(−.0725) | .0865(.0522) | .1327(.1354) | .0945(−.0731) | .1159(.0422) | ||
(0*4,10,0*5) | .0755(.0250) | .0658(.0045) | .0642(−.0725) | .0631(.0239) | .0790(.0807) | .0654(−.0737) | .0760(.0145) | |||
(0*9,10) | .0726(.0406) | .0504(.0026) | .0556(−.0386) | .0610(.0363) | .0770(.0838) | .0570(−.0386) | .0729(.0341) | |||
(5,0*8,5) | .0994(.0539) | .0605(.0078) | .0644(−.0479) | .0706(.0437) | .0978(.1039) | .0724(−.0472) | .0912(.0404) | |||
30 | 22 | (8,0*21) | .0489(.0305) | .0444(.0020) | .0392(−.0362) | .0436(.0292) | .0540(.0698) | .0396(−.0371) | .0500(.0265) | |
(0*10,8,0*11) | .0368(.0179) | .0354(.0013) | .0325(−.0345) | .0341(.0182) | .0398(.0504) | .0326(−.0350) | .0382(.0160) | |||
(0*21,8) | .0358(.0227) | .0331(.0011) | .0303(−.0268) | .0332(.0225) | .0393(.0531) | .0305(−.0273) | .0371(.0212) | |||
(4,0*20,4) | .0399(.0244) | .0379(.0015) | .0332(−.0322) | .0364(.0239) | .0440(.0587) | .0334(−.0329) | .0412(.0219) | |||
18 | (12,0*17) | .0696(.0464) | .0532(.0030) | .0515(−.0358) | .0586(.0425) | .0756(.0917) | .0528(−.0367) | .0695(.0396) | ||
(0*8,12,0*9) | .0422(.0205) | .0395(.0016) | .0376(−.0377) | .0388(.0212) | .0454(.0565) | .0377(−.0383) | .0439(.0182) | |||
(0*17,12) | .0393(.0305) | .0333(.0011) | .0324(−.0199) | .0361(.0298) | .0431(.0609) | .0327(−.0203) | .0408(.0291) | |||
(6,0*16,6) | .0493(.0381) | .0411(.0017) | .0389(−.0244) | .0442(.0365) | .0545(.0747) | .0394(−.0250) | .0507(.0352) | |||
14 | (16,0*13) | .0737(.0334) | .0662(.0046) | .0561(−.0659) | .0605(.0295) | .0801(.0880) | .0567(−.0681) | .0712(.0211) | ||
(0*6,16,0*7) | .0428(−.0006) | .0466(.0022) | .0418(−.0672) | .0393(.0020) | .0450(.0415) | .0415(−.0682) | .0445(−.0044) | |||
(0*13,16) | .0381(.0119) | .0342(.0012) | .0344(−.0388) | .0353(.0122) | .0406(.0433) | .0343(−.0391) | .0395(.0101) | |||
(8,0*12,8) | .0495(.0248) | .0441(.0020) | .0404(−.0415) | .0440(.0237) | .0541(.0639) | .0408(−.0422) | .0507(.0207) | |||
40 | 30 | (10,0*29) | .0374(.0258) | .0328(.0011) | .0315(−.0234) | .0347(.0256) | .0410(.0558) | .0317(−.0238) | .0389(.0246) | |
(0*14,10,0*15) | .0278(.0133) | .0262(.0007) | .0253(−.0254) | .0263(.0139) | .0297(.0379) | .0254(−.0257) | .0289(.0129) | |||
(0*29,10) | .0266(.0189) | .0249(.0006) | .0234(−.0182) | .0252(.0191) | .0288(.0422) | .0234(−.0184) | .0276(.0186) | |||
(5,0*28,5) | .0313(.0226) | .0283(.0008) | .0269(−.0197) | .0293(.0227) | .0341(.0489) | .0270(−.0200) | .0326(.0221) | |||
26 | (14,0*25) | .0426(.0288) | .0375(.0015) | .0349(−.0275) | .0387(.0283) | .0467(.0627) | .0353(−.0281) | .0442(.0268) | ||
(0,12,14,0*13) | .0294(.0141) | .0282(.0008) | .0270(−.0273) | .0278(.0150) | .0314(.0405) | .0271(−.0276) | .0307(.0136) | |||
(0*25,14) | .0274(.0223) | .0250(.0006) | .0238(−.0150) | .0260(.0225) | .0298(.0458) | .0239(−.0152) | .0286(.0222) | |||
(7,0*24,7) | .0351(.0283) | .0301(.0009) | .0294(−.0169) | .0327(.0281) | .0385(.0561) | .0297(−.0172) | .0366(.0278) | |||
20 | (20,0*19) | .0639(.0500) | .0478(.0025) | .0467(−.0243) | .0540(.0468) | .0692(.0914) | .0486(−.0248) | .0645(.0454) | ||
(0*9,20,0*10) | .0326(.0154) | .0336(.0011) | .0303(−.0334) | .0308(.0171) | .0350(.0466) | .0302(−.0339) | .0340(.0146) | |||
(0*19,20) | .0287(.0205) | .0252(.0006) | .0254(−.0172) | .0272(.0208) | .0310(.0442) | .0254(−.0174) | .0299(.0203) | |||
(10,0*18,10) | .0386(.0342) | .0330(.0011) | .0318(−.0155) | .0358(.0337) | .0428(.0644) | .0320(−.0160) | .0401(.0332) | |||
1.75 | 20 | 14 | (6,0*13) | .0684(.0306) | .0583(.0036) | .0536(−.0583) | .0570(.0261) | .0736(.0798) | .0545(−.0595) | .0672(.0200) |
(0*6,6,0*7) | .0520(.0094) | .0482(.0024) | .0469(−.0620) | .0461(.0089) | .0548(.0522) | .0472(−.0627) | .0534(.0033) | |||
(0*13,6) | .0488(.0225) | .0422(.0018) | .0406(−.0416) | .0433(.0206) | .0526(.0602) | .0411(−.0421) | .0499(.0178) | |||
(3,0*12,3) | .0549(.0235) | .0489(.0025) | .0451(−.0504) | .0479(.0210) | .0595(.0663) | .0456(−.0513) | .0554(.0167) | |||
12 | (8,0*11) | .0944(.0495) | .0659(.0047) | .0671(−.0558) | .0729(.0405) | .0981(.1029) | .0701(−.0563) | .0896(.0346) | ||
(0*5,8,0*6) | .0563(.0162) | .0537(.0029) | .0508(−.0627) | .0499(.0160) | .0601(.0634) | .0508(−.0638) | .0576(.0091) | |||
(0*11,8) | .0542(.0291) | .0430(.0019) | .0450(−.0368) | .0482(.0267) | .0585(.0673) | .0454(−.0371) | .0555(.0244) | |||
(4,0*10,4) | .0669(.0404) | .0519(.0029) | .0513(−.0401) | .0565(.0359) | .0721(.0850) | .0526(−.0407) | .0667(.0327) | |||
10 | (10,0*9) | .1273(.0595) | .0718(.0153) | .0783(−.0669) | .0799(.0431) | .1174(.1171) | .0925(−.0656) | .1083(.0362) | ||
(0*4,10,0*5) | .0665(.0203) | .0615(.0039) | .0590(−.0700) | .0573(.0200) | .0703(.0733) | .0596(−.0712) | .0678(.0112) | |||
(0*9,10) | .0605(.0210) | .0453(.0021) | .0521(−.0484) | .0527(.0191) | .0628(.0613) | .0531(−.0482) | .0621(.0158) | |||
(5,0*8,5) | .0779(.0456) | .0553(.0032) | .0584(−.0416) | .0642(.0397) | .0827(.0923) | .0603(−.0418) | .0772(.0364) | |||
30 | 22 | (8,0*21) | .0402(.0213) | .0381(.0015) | .0343(−.0358) | .0366(.0205) | .0438(.0558) | .0346(−.0364) | .0415(.0181) | |
(0*10,8,0*11) | .0320(.0111) | .0318(.0010) | .0294(−.0358) | .0298(.0115) | .0340(.0406) | .0295(−.0362) | .0332(.0094) | |||
(0*21,8) | .0304(.0182) | .0284(.0008) | .0267(−.0244) | .0284(.0179) | .0328(.0447) | .0268(−.0247) | .0315(.0169) | |||
(4,0*20,4) | .0356(.0205) | .0326(.0011) | .0307(−.0283) | .0330(.0200) | .0387(.0505) | .0309(−.0288) | .0368(.0186) | |||
18 | (12,0*17) | .0541(.0332) | .0460(.0022) | .0437(−.0366) | .0478(.0310) | .0591(.0737) | .0442(−.0373) | .0552(.0282) | ||
(0*8,12,0*9) | .0379(.0161) | .0363(.0013) | .0347(−.0373) | .0351(.0168) | .0404(.0495) | .0348(−.0378) | .0394(.0140) | |||
(0*17,12) | .0335(.0217) | .0288(.0008) | .0293(−.0216) | .0312(.0213) | .0360(.0485) | .0295(−.0218) | .0348(.0206) | |||
(6,0*16,6) | .0421(.0293) | .0352(.0013) | .0351(−.0242) | .0384(.0281) | .0459(.0613) | .0355(−.0245) | .0437(.0270) | |||
14 | (16,0*13) | .0658(.0270) | .0574(.0035) | .0525(−.0598) | .0555(.0238) | .0708(.0759) | .0532(−.0610) | .0652(.0176) | ||
(0*6,16,0*7) | .0405(−.0001) | .0438(.0019) | .0396(−.0628) | .0374(.0021) | .0426(.0397) | .0393(−.0637) | .0421(−.0036) | |||
(0*13,16) | .0326(.0006) | .0315(.0010) | .0319(−.0456) | .0305(.0016) | .0336(.0301) | .0317(−.0458) | .0338(−.0013) | |||
(8,0*12,8) | .0427(.0180) | .0383(.0015) | .0370(−.0395) | .0388(.0173) | .0460(.0528) | .0372(−.0399) | .0441(.0148) | |||
40 | 30 | (10,0*29) | .0304(.0190) | .0282(.0008) | .0268(−.0231) | .0286(.0189) | .0329(.0453) | .0269(−.0234) | .0316(.0180) | |
(0*14,10,0*15) | .0235(.0097) | .0236(.0006) | .0221(−.0251) | .0224(.0103) | .0248(.0321) | .0221(−.0253) | .0243(.0092) | |||
(0*29,10) | .0222(.0149) | .0214(.0005) | .0201(−.0170) | .0212(.0150) | .0238(.0352) | .0201(−.0172) | .0230(.0145) | |||
(5,0*28,5) | .0246(.0160) | .0243(.0006) | .0221(−.0202) | .0234(.0161) | .0265(.0389) | .0221(−.0205) | .0254(.0153) | |||
26 | (14,0*25) | .0379(.0264) | .0324(.0011) | .0321(−.0225) | .0350(.0258) | .0412(.0562) | .0325(−.0228) | .0394(.0249) | ||
(0,12,14,0*13) | .0260(.0120) | .0259(.0007) | .0243(−.0260) | .0248(.0128) | .0276(.0364) | .0244(−.0263) | .0271(.0115) | |||
(0*25,14) | .0247(.0192) | .0215(.0005) | .0221(−.0130) | .0236(.0192) | .0265(.0396) | .0222(−.0131) | .0257(.0190) | |||
(7,0*24,7) | .0282(.0203) | .0258(.0007) | .0248(−.0183) | .0266(.0202) | .0305(.0445) | .0250(−.0185) | .0293(.0197) | |||
20 | (20,0*19) | .0501(.0392) | .0416(.0018) | .0402(−.0241) | .0451(.0374) | .0553(.0763) | .0406(−.0246) | .0515(.0359) | ||
(0*9,20,0*10) | .0307(.0143) | .0314(.0010) | .0287(−.0314) | .0290(.0156) | .0328(.0435) | .0286(−.0319) | .0319(.0135) | |||
(0*19,20) | .0251(.0096) | .0227(.0005) | .0238(−.0240) | .0240(.0101) | .0263(.0312) | .0238(−.0241) | .0261(.0092) | |||
(10,0*18,10) | .0311(.0242) | .0283(.0008) | .0271(−.0182) | .0292(.0240) | .0338(.0505) | .0272(−.0185) | .0323(.0232) |
The relative MSEs and biases of reliability estimators with MLE and Bayesian estimators
MSE(bias) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5 | 20 | 14 | (6,0*13) | .0173(.0025) | .0118(−.0471) | .0087(−.0097) | .0075(.0104) | .0115(−.0477) | .0091(−.0148) | .0077(−.0085) |
(0*6,6,0*7) | .0143(−.0051) | .0092(−.0409) | .0074(−.0131) | .0058(.0066) | .0090(−.0412) | .0071(−.0139) | .0061(−.0092) | |||
(0*13,6) | .0130(.0023) | .0078(−.0337) | .0063(−.0068) | .0057(.0085) | .0077(−.0341) | .0066(−.0095) | .0058(−.0060) | |||
(3,0*12,3) | .0148(.0017) | .0094(−.0398) | .0073(−.0085) | .0064(.0089) | .0092(−.0402) | .0076(−.0121) | .0066(−.0075) | |||
12 | (8,0*11) | .0212(.0091) | .0145(−.0505) | .0105(−.0077) | .0089(.0143) | .0140(−.0512) | .0109(−.0141) | .0091(−.0066) | ||
(0*5,8,0*6) | .0160(−.0034) | .0120(−.0469) | .0085(−.0133) | .0071(.0057) | .0116(−.0470) | .0090(−.0170) | .0076(−.0113) | |||
(0*11,8) | .0142(.0083) | .0083(−.0306) | .0068(−.0035) | .0062(.0117) | .0082(−.0308) | .0071(−.0061) | .0063(−.0028) | |||
(4,0*10,4) | .0167(.0092) | .0101(−.0374) | .0080(−.0045) | .0071(.0134) | .0099(−.0378) | .0083(−.0084) | .0072(−.0036) | |||
10 | (10,0*9) | .0231(.0092) | .0168(−.0593) | .0114(−.0088) | .0094(.0163) | .0162(−.0605) | .0119(−.0174) | .0096(−.0074) | ||
(0*4,10,0*5) | .0170(−.0043) | .0137(−.0531) | .0092(−.0147) | .0075(.0068) | .0132(−.0533) | .0098(−.0192) | .0081(−.0120) | |||
(0*9,10) | .0156(.0048) | .0101(−.0356) | .0079(−.0071) | .0069(.0089) | .0098(−.0355) | .0082(−.0099) | .0071(−.0061) | |||
(5,0*8,5) | .0176(.0074) | .0112(−.0416) | .0086(−.0064) | .0075(.0125) | .0110(−.0420) | .0089(−.0108) | .0076(−.0054) | |||
30 | 22 | (8,0*21) | .0112(.0044) | .0064(−.0281) | .0053(−.0041) | .0049(.0098) | .0063(−.0284) | .0055(−.0061) | .0049(−.0033) | |
(0*10,8,0*11) | .0092(.0004) | .0054(−.0251) | .0044(−.0057) | .0041(.0061) | .0053(−.0253) | .0046(−.0068) | .0042(−.0047) | |||
(0*21,8) | .0088(.0032) | .0047(−.0212) | .0041(−.0034) | .0039(.0074) | .0047(−.0214) | .0043(−.0043) | .0039(−.0027) | |||
(4,0*20,4) | .0096(.0032) | .0053(−.0244) | .0045(−.0039) | .0042(.0082) | .0053(−.0246) | .0047(−.0053) | .0042(−.0032) | |||
18 | (12,0*17) | .0148(.0085) | .0088(−.0327) | .0072(−.0038) | .0065(.0124) | .0087(−.0330) | .0075(−.0066) | .0065(−.0028) | ||
(0*8,12,0*9) | .0105(.0006) | .0067(−.0286) | .0053(−.0066) | .0048(.0066) | .0066(−.0287) | .0056(−.0080) | .0049(−.0053) | |||
(0*17,12) | .0092(.0067) | .0049(−.0192) | .0043(−.0013) | .0041(.0094) | .0049(−.0193) | .0045(−.0023) | .0041(−.0007) | |||
(6,0*16,6) | .0112(.0084) | .0061(−.0234) | .0053(−.0013) | .0049(.0115) | .0061(−.0236) | .0055(−.0029) | .0049(−.0007) | |||
14 | (16,0*13) | .0164(.0005) | .0115(−.0472) | .0084(−.0106) | .0072(.0094) | .0111(−.0479) | .0088(−.0152) | .0075(−.0090) | ||
(0*6,16,0*7) | .0115(−.0111) | .0087(−.0424) | .0063(−.0156) | .0053(.0005) | .0085(−.0425) | .0066(−.0176) | .0057(−.0134) | |||
(0*13,16) | .0098(−.0032) | .0062(−.0279) | .0050(−.0087) | .0045(.0029) | .0061(−.0279) | .0053(−.0099) | .0047(−.0078) | |||
(8,0*12,8) | .0115(.0012) | .0069(−.0308) | .0056(−.0067) | .0051(.0074) | .0068(−.0310) | .0059(−.0086) | .0052(−.0057) | |||
40 | 30 | (10,0*29) | .0091(.0045) | .0049(−.0203) | .0043(−.0027) | .0040(.0079) | .0048(−.0205) | .0044(−.0036) | .0040(−.0020) | |
(0*14,10,0*15) | .0072(.0001) | .0040(−.0189) | .0035(−.0046) | .0032(.0044) | .0040(−.0190) | .0036(−.0051) | .0033(−.0039) | |||
(0*29,10) | .0067(.0034) | .0034(−.0153) | .0031(−.0019) | .0030(.0064) | .0034(−.0154) | .0032(−.0023) | .0030(−.0014) | |||
(5,0*28,5) | .0076(.0043) | .0040(−.0171) | .0035(−.0019) | .0034(.0074) | .0039(−.0172) | .0037(−.0025) | .0034(−.0013) | |||
26 | (14,0*25) | .0098(.0050) | .0053(−.0229) | .0046(−.0028) | .0043(.0092) | .0053(−.0232) | .0048(−.0040) | .0043(−.0020) | ||
(0,12,14,0*13) | .0075(.0001) | .0043(−.0202) | .0036(−.0048) | .0034(.0049) | .0042(−.0203) | .0038(−.0053) | .0034(−.0039) | |||
(0*25,14) | .0067(.0051) | .0034(−.0141) | .0031(−.0008) | .0030(.0075) | .0034(−.0142) | .0032(−.0011) | .0030(−.0003) | |||
(7,0*24,7) | .0083(.0065) | .0042(−.0168) | .0038(−.0007) | .0036(.0090) | .0042(−.0169) | .0039(−.0014) | .0036(−.0002) | |||
20 | (20,0*19) | .0131(.0118) | .0071(−.0258) | .0060(−.0001) | .0056(.0144) | .0070(−.0261) | .0062(−.0022) | .0055(.0007) | ||
(0*9,20,0*10) | .0086(.0000) | .0053(−.0242) | .0043(−.0057) | .0039(.0057) | .0052(−.0243) | .0045(−.0064) | .0040(−.0044) | |||
(0*19,20) | .0073(.0037) | .0039(−.0158) | .0035(−.0021) | .0033(.0064) | .0039(−.0158) | .0036(−.0025) | .0033(−.0016) | |||
(10,0*18,10) | .0092(.0087) | .0048(−.0174) | .0043(.0002) | .0041(.0107) | .0047(−.0175) | .0044(−.0006) | .0040(.0008) | |||
1.75 | 20 | 14 | (6,0*13) | .0154(.0001) | .0104(−.0430) | .0078(−.0102) | .0067(.0080) | .0102(−.0434) | .0082(−.0143) | .0070(−.0091) |
(0*6,6,0*7) | .0129(−.0077) | .0093(−.0419) | .0068(−.0140) | .0058(.0022) | .0091(−.0420) | .0072(−.0169) | .0062(−.0126) | |||
(0*13,6) | .0114(.0002) | .0070(−.0309) | .0057(−.0074) | .0051(.0063) | .0069(−.0311) | .0059(−.0096) | .0052(−.0067) | |||
(3,0*12,3) | .0129(−.0007) | .0083(−.0364) | .0065(−.0090) | .0057(.0066) | .0082(−.0366) | .0068(−.0120) | .0059(−.0082) | |||
12 | (8,0*11) | .0188(.0050) | .0129(−.0468) | .0095(−.0090) | .0081(.0111) | .0125(−.0471) | .0099(−.0143) | .0084(−.0080) | ||
(0*5,8,0*6) | .0141(−.0050) | .0107(−.0443) | .0077(−.0133) | .0064(.0046) | .0104(−.0444) | .0081(−.0166) | .0069(−.0115) | |||
(0*11,8) | .0129(.0024) | .0081(−.0311) | .0065(−.0069) | .0058(.0071) | .0080(−.0311) | .0068(−.0092) | .0060(−.0062) | |||
(4,0*10,4) | .0146(.0058) | .0091(−.0345) | .0072(−.0056) | .0064(.0105) | .0090(−.0347) | .0076(−.0088) | .0066(−.0049) | |||
10 | (10,0*9) | .0212(.0054) | .0154(−.0550) | .0107(−.0103) | .0088(.0128) | .0149(−.0556) | .0112(−.0174) | .0092(−.0091) | ||
(0*4,10,0*5) | .0158(−.0050) | .0127(−.0503) | .0086(−.0144) | .0071(.0059) | .0122(−.0505) | .0092(−.0186) | .0077(−.0120) | |||
(0*9,10) | .0141(−.0032) | .0101(−.0385) | .0075(−.0118) | .0063(.0037) | .0098(−.0383) | .0079(−.0144) | .0068(−.0105) | |||
(5,0*8,5) | .0163(.0064) | .0107(−.0377) | .0082(−.0065) | .0072(.0108) | .0104(−.0378) | .0086(−.0101) | .0074(−.0056) | |||
30 | 22 | (8,0*21) | .0097(.0014) | .0056(−.0262) | .0047(−.0053) | .0043(.0071) | .0056(−.0264) | .0049(−.0069) | .0044(−.0046) | |
(0*10,8,0*11) | .0082(−.0021) | .0049(−.0245) | .0041(−.0068) | .0037(.0040) | .0049(−.0246) | .0042(−.0079) | .0038(−.0060) | |||
(0*21,8) | .0076(.0021) | .0041(−.0189) | .0036(−.0034) | .0034(.0061) | .0041(−.0190) | .0037(−.0042) | .0034(−.0029) | |||
(4,0*20,4) | .0088(.0021) | .0049(−.0220) | .0042(−.0042) | .0039(.0065) | .0048(−.0222) | .0044(−.0053) | .0040(−.0037) | |||
18 | (12,0*17) | .0124(.0047) | .0075(−.0302) | .0061(−.0049) | .0055(.0097) | .0074(−.0304) | .0064(−.0072) | .0056(−.0041) | ||
(0*8,12,0*9) | .0096(−.0008) | .0061(−.0273) | .0049(−.0070) | .0044(.0053) | .0060(−.0274) | .0051(−.0083) | .0046(−.0059) | |||
(0*17,12) | .0083(.0033) | .0047(−.0189) | .0040(−.0031) | .0038(.0065) | .0046(−.0190) | .0042(−.0040) | .0038(−.0026) | |||
(6,0*16,6) | .0099(.0054) | .0055(−.0219) | .0047(−.0027) | .0044(.0087) | .0054(−.0220) | .0049(−.0040) | .0044(−.0021) | |||
14 | (16,0*13) | .0150(−.0013) | .0103(−.0432) | .0077(−.0109) | .0066(.0071) | .0101(−.0436) | .0081(−.0147) | .0069(−.0096) | ||
(0*6,16,0*7) | .0110(−.0102) | .0081(−.0397) | .0059(−.0146) | .0050(.0006) | .0079(−.0398) | .0062(−.0165) | .0054(−.0127) | |||
(0*13,16) | .0090(−.0079) | .0061(−.0298) | .0048(−.0115) | .0041(−.0003) | .0060(−.0297) | .0050(−.0127) | .0045(−.0105) | |||
(8,0*12,8) | .0105(−.0009) | .0066(−.0290) | .0053(−.0076) | .0048(.0051) | .0065(−.0291) | .0056(−.0093) | .0050(−.0068) | |||
40 | 30 | (10,0*29) | .0077(.0025) | .0041(−.0185) | .0036(−.0031) | .0034(.0062) | .0041(−.0186) | .0038(−.0039) | .0034(−.0027) | |
(0*14,10,0*15) | .0063(−.0008) | .0035(−.0176) | .0030(−.0046) | .0028(.0036) | .0035(−.0177) | .0031(−.0051) | .0029(−.0040) | |||
(0*29,10) | .0058(.0023) | .0030(−.0137) | .0027(−.0021) | .0026(.0052) | .0030(−.0138) | .0028(−.0025) | .0026(−.0017) | |||
(5,0*28,5) | .0064(.0023) | .0034(−.0158) | .0031(−.0026) | .0029(.0057) | .0034(−.0158) | .0032(−.0031) | .0029(−.0021) | |||
26 | (14,0*25) | .0089(.0048) | .0048(−.0200) | .0042(−.0024) | .0039(.0082) | .0048(−.0201) | .0043(−.0034) | .0039(−.0018) | ||
(0,12,14,0*13) | .0068(−.0002) | .0039(−.0188) | .0033(−.0045) | .0031(.0044) | .0038(−.0188) | .0034(−.0050) | .0031(−.0038) | |||
(0*25,14) | .0062(.0040) | .0032(−.0128) | .0029(−.0012) | .0028(.0061) | .0031(−.0129) | .0030(−.0015) | .0028(−.0008) | |||
(7,0*24,7) | .0070(.0038) | .0036(−.0158) | .0032(−.0018) | .0031(.0068) | .0036(−.0159) | .0034(−.0024) | .0031(−.0014) | |||
20 | (20,0*19) | .0115(.0087) | .0063(−.0238) | .0054(−.0013) | .0050(.0117) | .0063(−.0240) | .0056(−.0030) | .0050(−.0007) | ||
(0*9,20,0*10) | .0082(−.0001) | .0050(−.0228) | .0041(−.0055) | .0037(.0052) | .0049(−.0229) | .0042(−.0062) | .0038(−.0044) | |||
(0*19,20) | .0067(−.0013) | .0038(−.0179) | .0033(−.0052) | .0030(.0028) | .0038(−.0179) | .0034(−.0057) | .0031(−.0046) | |||
(10,0*18,10) | .0078(.0052) | .0042(−.0168) | .0037(−.0014) | .0035(.0079) | .0041(−.0169) | .0038(−.0022) | .0035(−.0010) |
The relative MSEs and biases of hazard estimators with MLE and Bayesian estimators
MSE(bias) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5 | 20 | 14 | (6,0*13) | .0598(.1098) | .0547(.0294) | .0324(−.0140) | .0399(.0288) | .0576(.1105) | .0353(.0252) | .0424(.0396) |
(0*6,6,0*7) | .0460(.0939) | .0465(.0367) | .0253(−.0079) | .0340(.0344) | .0445(.0941) | .0279(.0250) | .0331(.0357) | |||
(0*13,6) | .0376(.0774) | .0389(.0205) | .0243(−.0119) | .0282(.0203) | .0368(.0779) | .0257(.0180) | .0296(.0260) | |||
(3,0*12,3) | .0461(.0916) | .0453(.0253) | .0276(−.0120) | .0329(.0247) | .0449(.0922) | .0297(.0219) | .0348(.0325) | |||
12 | (8,0*11) | .0768(.1206) | .0675(.0258) | .0391(−.0206) | .0493(.0267) | .0729(.1210) | .0427(.0230) | .0524(.0405) | ||
(0*5,8,0*6) | .0625(.1100) | .0547(.0383) | .0318(−.0045) | .0403(.0362) | .0594(.1094) | .0358(.0312) | .0432(.0445) | |||
(0*11,8) | .0409(.0716) | .0427(.0128) | .0268(−.0180) | .0309(.0140) | .0397(.0718) | .0282(.0120) | .0325(.0197) | |||
(4,0*10,4) | .0503(.0878) | .0500(.0158) | .0305(−.0206) | .0362(.0171) | .0488(.0883) | .0324(.0146) | .0381(.0256) | |||
10 | (10,0*9) | .0913(.1419) | .0734(.0291) | .0409(−.0244) | .0537(.0300) | .0859(.1430) | .0452(.0252) | .0575(.0483) | ||
(0*4,10,0*5) | .0732(.1251) | .0593(.0422) | .0334(−.0064) | .0439(.0398) | .0689(.1246) | .0383(.0331) | .0474(.0499) | |||
(0*9,10) | .0517(.0844) | .0500(.0225) | .0303(−.0115) | .0366(.0227) | .0494(.0837) | .0330(.0198) | .0388(.0289) | |||
(5,0*8,5) | .0577(.0979) | .0546(.0211) | .0327(−.0184) | .0397(.0219) | .0554(.0982) | .0352(.0189) | .0420(.0315) | |||
30 | 22 | (8,0*21) | .0297(.0640) | .0321(.0132) | .0205(−.0155) | .0231(.0136) | .0293(.0646) | .0213(.0114) | .0242(.0177) | |
(0*10,8,0*11) | .0250(.0570) | .0270(.0165) | .0173(−.0086) | .0195(.0159) | .0246(.0572) | .0182(.0137) | .0204(.0185) | |||
(0*21,8) | .0216(.0481) | .0250(.0106) | .0165(−.0115) | .0180(.0108) | .0214(.0484) | .0169(.0093) | .0187(.0130) | |||
(4,0*20,4) | .0244(.0552) | .0273(.0121) | .0177(−.0129) | .0196(.0123) | .0241(.0556) | .0183(.0105) | .0205(.0153) | |||
18 | (12,0*17) | .0431(.0764) | .0445(.0137) | .0279(−.0191) | .0322(.0149) | .0419(.0769) | .0293(.0123) | .0339(.0210) | ||
(0*8,12,0*9) | .0322(.0656) | .0330(.0194) | .0207(−.0088) | .0241(.0188) | .0314(.0656) | .0223(.0159) | .0253(.0220) | |||
(0*17,12) | .0228(.0443) | .0265(.0058) | .0175(−.0153) | .0191(.0069) | .0225(.0445) | .0179(.0055) | .0198(.0090) | |||
(6,0*16,6) | .0287(.0541) | .0322(.0064) | .0210(−.0188) | .0232(.0079) | .0282(.0545) | .0216(.0061) | .0243(.0113) | |||
14 | (16,0*13) | .0582(.1097) | .0528(.0314) | .0313(−.0122) | .0386(.0303) | .0560(.1104) | .0343(.0260) | .0411(.0402) | ||
(0*6,16,0*7) | .0431(.0963) | .0393(.0420) | .0232(.0041) | .0289(.0383) | .0417(.0962) | .0262(.0332) | .0307(.0429) | |||
(0*13,16) | .0297(.0637) | .0312(.0245) | .0196(−.0015) | .0228(.0230) | .0290(.0635) | .0212(.0206) | .0239(.0256) | |||
(8,0*12,8) | .0331(.0703) | .0347(.0196) | .0219(−.0103) | .0252(.0192) | .0324(.0706) | .0232(.0168) | .0264(.0235) | |||
40 | 30 | (10,0*29) | .0221(.0464) | .0257(.0090) | .0169(−.0124) | .0185(.0096) | .0219(.0466) | .0174(.0080) | .0192(.0115) | |
(0*14,10,0*15) | .0180(.0427) | .0208(.0131) | .0136(−.0059) | .0150(.0127) | .0178(.0428) | .0142(.0111) | .0155(.0138) | |||
(0*29,10) | .0153(.0346) | .0186(.0064) | .0125(−.0102) | .0134(.0069) | .0152(.0348) | .0128(.0057) | .0138(.0078) | |||
(5,0*28,5) | .0177(.0388) | .0212(.0066) | .0142(−.0120) | .0152(.0072) | .0176(.0390) | .0145(.0059) | .0158(.0085) | |||
26 | (14,0*25) | .0246(.0524) | .0278(.0094) | .0181(−.0148) | .0199(.0101) | .0243(.0527) | .0186(.0082) | .0208(.0128) | ||
(0,12,14,0*13) | .0195(.0457) | .0220(.0137) | .0143(−.0068) | .0159(.0133) | .0193(.0458) | .0150(.0113) | .0165(.0146) | |||
(0*25,14) | .0149(.0321) | .0184(.0035) | .0124(−.0126) | .0131(.0044) | .0148(.0323) | .0126(.0033) | .0136(.0053) | |||
(7,0*24,7) | .0187(.0385) | .0226(.0039) | .0151(−.0151) | .0161(.0050) | .0186(.0387) | .0153(.0037) | .0167(.0065) | |||
20 | (20,0*19) | .0332(.0601) | .0364(.0038) | .0233(−.0244) | .0261(.0060) | .0326(.0606) | .0239(.0038) | .0273(.0105) | ||
(0*9,20,0*10) | .0247(.0550) | .0263(.0165) | .0168(−.0080) | .0191(.0159) | .0243(.0551) | .0179(.0130) | .0200(.0176) | |||
(0*19,20) | .0176(.0362) | .0210(.0072) | .0140(−.0099) | .0151(.0077) | .0174(.0362) | .0144(.0064) | .0156(.0086) | |||
(10,0*18,10) | .0216(.0403) | .0257(.0021) | .0171(−.0180) | .0184(.0037) | .0214(.0405) | .0174(.0023) | .0192(.0055) | |||
1.75 | 20 | 14 | (6,0*13) | .0522(.0996) | .0490(.0298) | .0293(−.0099) | .0358(.0288) | .0505(.1000) | .0321(.0258) | .0381(.0377) |
(0*6,6,0*7) | .0459(.0960) | .0427(.0386) | .0254(.0011) | .0314(.0357) | .0445(.0959) | .0285(.0321) | .0334(.0420) | |||
(0*13,6) | .0336(.0707) | .0350(.0214) | .0220(−.0081) | .0254(.0207) | .0329(.0709) | .0235(.0189) | .0268(.0255) | |||
(3,0*12,3) | .0404(.0834) | .0403(.0261) | .0248(−.0079) | .0293(.0250) | .0394(.0837) | .0268(.0227) | .0310(.0314) | |||
12 | (8,0*11) | .0674(.1109) | .0605(.0283) | .0354(−.0149) | .0443(.0283) | .0643(.1108) | .0390(.0250) | .0472(.0398) | ||
(0*5,8,0*6) | .0553(.1031) | .0489(.0376) | .0287(−.0030) | .0361(.0352) | .0529(.1027) | .0324(.0307) | .0387(.0426) | |||
(0*11,8) | .0401(.0726) | .0408(.0211) | .0253(−.0088) | .0297(.0208) | .0389(.0724) | .0273(.0187) | .0314(.0257) | |||
(4,0*10,4) | .0453(.0807) | .0453(.0183) | .0279(−.0154) | .0330(.0188) | .0439(.0809) | .0299(.0167) | .0348(.0258) | |||
10 | (10,0*9) | .0829(.1312) | .0688(.0323) | .0388(−.0175) | .0504(.0323) | .0782(.1313) | .0433(.0282) | .0541(.0476) | ||
(0*4,10,0*5) | .0670(.1180) | .0555(.0412) | .0316(−.0049) | .0410(.0387) | .0634(.1175) | .0362(.0327) | .0443(.0479) | |||
(0*9,10) | .0516(.0903) | .0477(.0339) | .0282(−.0012) | .0351(.0320) | .0493(.0893) | .0317(.0287) | .0375(.0379) | |||
(5,0*8,5) | .0551(.0895) | .0523(.0212) | .0316(−.0150) | .0383(.0217) | .0526(.0892) | .0343(.0192) | .0407(.0298) | |||
30 | 22 | (8,0*21) | .0260(.0593) | .0283(.0156) | .0181(−.0106) | .0204(.0153) | .0257(.0597) | .0190(.0136) | .0214(.0188) | |
(0*10,8,0*11) | .0228(.0552) | .0247(.0190) | .0158(−.0047) | .0179(.0179) | .0225(.0553) | .0168(.0160) | .0187(.0202) | |||
(0*21,8) | .0185(.0427) | .0216(.0103) | .0143(−.0093) | .0156(.0104) | .0184(.0429) | .0148(.0093) | .0162(.0122) | |||
(4,0*20,4) | .0223(.0499) | .0254(.0127) | .0166(−.0097) | .0183(.0126) | .0221(.0502) | .0172(.0113) | .0191(.0151) | |||
18 | (12,0*17) | .0363(.0698) | .0377(.0157) | .0237(−.0145) | .0274(.0161) | .0355(.0701) | .0251(.0140) | .0288(.0212) | ||
(0*8,12,0*9) | .0292(.0623) | .0303(.0201) | .0191(−.0067) | .0221(.0192) | .0286(.0624) | .0205(.0166) | .0232(.0220) | |||
(0*17,12) | .0216(.0435) | .0248(.0101) | .0163(−.0096) | .0179(.0104) | .0213(.0435) | .0169(.0092) | .0187(.0122) | |||
(6,0*16,6) | .0256(.0504) | .0288(.0093) | .0188(−.0137) | .0208(.0101) | .0252(.0506) | .0195(.0087) | .0217(.0129) | |||
14 | (16,0*13) | .0515(.1000) | .0481(.0315) | .0287(−.0082) | .0351(.0302) | .0498(.1003) | .0315(.0267) | .0374(.0384) | ||
(0*6,16,0*7) | .0398(.0901) | .0371(.0394) | .0221(.0038) | .0273(.0359) | .0386(.0900) | .0249(.0315) | .0289(.0402) | |||
(0*13,16) | .0292(.0674) | .0296(.0312) | .0182(.0047) | .0217(.0284) | .0285(.0671) | .0202(.0259) | .0228(.0311) | |||
(8,0*12,8) | .0316(.0663) | .0331(.0219) | .0209(−.0058) | .0241(.0209) | .0309(.0663) | .0224(.0189) | .0253(.0246) | |||
40 | 30 | (10,0*29) | .0186(.0419) | .0218(.0098) | .0144(−.0096) | .0157(.0099) | .0185(.0421) | .0149(.0087) | .0163(.0116) | |
(0*14,10,0*15) | .0158(.0396) | .0183(.0130) | .0120(−.0046) | .0132(.0124) | .0157(.0397) | .0126(.0111) | .0137(.0134) | |||
(0*29,10) | .0132(.0309) | .0162(.0066) | .0109(−.0082) | .0116(.0068) | .0131(.0310) | .0112(.0060) | .0120(.0077) | |||
(5,0*28,5) | .0153(.0356) | .0183(.0080) | .0123(−.0088) | .0132(.0081) | .0152(.0357) | .0126(.0072) | .0136(.0093) | |||
26 | (14,0*25) | .0218(.0457) | .0252(.0082) | .0165(−.0131) | .0181(.0089) | .0216(.0459) | .0170(.0075) | .0188(.0111) | ||
(0,12,14,0*13) | .0175(.0423) | .0199(.0129) | .0130(−.0061) | .0144(.0124) | .0173(.0424) | .0137(.0108) | .0149(.0136) | |||
(0*25,14) | .0140(.0293) | .0173(.0045) | .0117(−.0099) | .0124(.0051) | .0139(.0293) | .0119(.0044) | .0128(.0059) | |||
(7,0*24,7) | .0162(.0359) | .0195(.0063) | .0130(−.0110) | .0139(.0068) | .0161(.0360) | .0133(.0058) | .0145(.0081) | |||
20 | (20,0*19) | .0295(.0553) | .0326(.0064) | .0210(−.0193) | .0234(.0079) | .0290(.0556) | .0217(.0062) | .0246(.0116) | ||
(0*9,20,0*10) | .0230(.0517) | .0248(.0158) | .0159(−.0072) | .0180(.0152) | .0226(.0518) | .0169(.0128) | .0188(.0169) | |||
(0*19,20) | .0174(.0404) | .0198(.0146) | .0129(−.0028) | .0143(.0138) | .0172(.0404) | .0137(.0125) | .0149(.0149) | |||
(10,0*18,10) | .0189(.0385) | .0223(.0057) | .0148(−.0129) | .0160(.0065) | .0187(.0386) | .0152(.0054) | .0166(.0081) |
The relative CLs and CPs of interval estimators with MLE and Bayesian estimators
CL(CP) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 20 | 14 | (6,0*13) | 1.1120(96.1) | .3861(95.3) | .8507(95.4) | 1.0814(92.5) | .3809(95.3) | .8033(95.7) | .3449(95.4) | .7748(94.9) |
(0*6,6,0*7) | .9740(95.8) | .3476(95.7) | .7485(95.5) | .9230(92.8) | .3446(95.8) | .7074(95.5) | .3103(95.7) | .7102(94.3) | |||
(0*13,6) | .9595(96.2) | .3269(95.7) | .7027(95.7) | .9016(93.7) | .3248(95.8) | .6813(95.7) | .3030(95.8) | .6526(93.8) | |||
(3,0*12,3) | 1.0233(95.6) | .3513(95.9) | .7582(96.0) | .9766(93.5) | .3466(95.9) | .7292(96.2) | .3201(96.2) | .7042(94.8) | |||
12 | (8,0*11) | 1.2655(95.7) | .4364(95.8) | .9709(95.7) | 1.2081(92.2) | .4284(95.7) | .9022(95.5) | .3814(95.8) | .8640(94.5) | ||
(0*5,8,0*6) | 1.0991(95.7) | .4017(95.6) | .8836(95.6) | .9695(92.8) | .3949(95.7) | .8268(95.5) | .3518(95.4) | .7737(94.4) | |||
(0*11,8) | 1.0543(95.7) | .3503(95.3) | .7598(95.4) | .9252(93.8) | .3480(95.5) | .7292(95.3) | .3218(95.4) | .6869(95.0) | |||
(4,0*10,4) | 1.1376(95.7) | .3735(95.8) | .8082(95.7) | 1.0387(93.3) | .3694(95.8) | .7682(95.6) | .3364(95.8) | .7423(94.8) | |||
10 | (10,0*9) | 1.3137(96.3) | .4505(95.7) | 1.0068(95.7) | 1.3290(92.9) | .4406(95.5) | .9138(95.8) | .3802(95.8) | .9002(94.5) | ||
(0*4,10,0*5) | 1.1301(96.0) | .4101(95.5) | .9017(95.5) | 1.0266(93.0) | .4023(95.5) | .8264(95.3) | .3516(95.4) | .8057(94.1) | |||
(0*9,10) | 1.1099(95.3) | .3838(95.4) | .8407(95.4) | .9319(93.5) | .3792(95.4) | .7962(95.5) | .3421(95.4) | .7445(94.7) | |||
(5,0*8,5) | 1.1893(95.5) | .3988(95.7) | .8744(95.7) | 1.0763(93.7) | .3928(95.7) | .8249(95.8) | .3562(95.7) | .7764(93.8) | |||
30 | 22 | (8,0*21) | .8993(95.6) | .2961(95.6) | .6289(95.5) | .8470(95.1) | .2941(95.5) | .6135(95.7) | .2760(95.5) | .5930(95.4) | |
(0*10,8,0*11) | .7718(95.8) | .2752(96.0) | .5839(95.8) | .7392(94.9) | .2729(95.8) | .5671(95.8) | .2566(95.8) | .5440(95.0) | |||
(0*21,8) | .7587(96.0) | .2597(96.1) | .5473(95.9) | .7219(94.7) | .2589(96.1) | .5402(96.1) | .2472(96.1) | .5233(95.1) | |||
(4,0*20,4) | .7986(95.8) | .2747(95.8) | .5823(96.0) | .7746(94.9) | .2736(95.8) | .5702(95.8) | .2594(95.8) | .5468(95.1) | |||
18 | (12,0*17) | 1.0238(96.2) | .3493(95.9) | .7549(96.0) | .9544(93.5) | .3469(95.9) | .7273(96.0) | .3201(96.0) | .7011(94.2) | ||
(0*8,12,0*9) | .8587(96.0) | .3088(95.7) | .6596(95.5) | .7797(94.0) | .3064(95.7) | .6330(95.6) | .2818(95.5) | .6032(93.8) | |||
(0*17,12) | .8169(95.4) | .2717(95.5) | .5745(95.5) | .7311(94.8) | .2715(95.5) | .5640(95.4) | .2593(95.5) | .5402(95.2) | |||
(6,0*16,6) | .9274(95.5) | .3041(95.4) | .6474(95.4) | .8219(95.2) | .3023(95.4) | .6301(95.4) | .2852(95.4) | .5963(94.9) | |||
14 | (16,0*13) | 1.0703(95.7) | .3798(95.9) | .8350(95.9) | 1.0507(92.5) | .3744(95.7) | .7892(95.8) | .3405(95.8) | .7607(95.0) | ||
(0*6,16,0*7) | .8364(96.0) | .3292(95.9) | .7143(96.0) | .8220(93.0) | .3243(96.1) | .6737(96.0) | .2935(95.9) | .6491(93.9) | |||
(0*13,16) | .7889(95.9) | .2970(95.6) | .6349(95.6) | .7241(93.2) | .2931(95.6) | .6125(95.7) | .2728(95.6) | .5842(93.4) | |||
(8,0*12,8) | .8908(96.0) | .3127(95.8) | .6690(95.6) | .8411(93.5) | .3101(95.8) | .6508(95.8) | .2913(95.8) | .6172(94.3) | |||
40 | 30 | (10,0*29) | .7852(96.1) | .2638(95.9) | .5546(95.9) | .7184(93.8) | .2632(95.9) | .5455(95.9) | .2503(95.9) | .5311(94.4) | |
(0*14,10,0*15) | .6854(95.7) | .2400(95.7) | .5019(95.7) | .6298(94.8) | .2392(95.7) | .4946(95.8) | .2279(95.6) | .4769(95.1) | |||
(0*29,10) | .6625(95.5) | .2235(95.7) | .4651(95.7) | .6188(95.4) | .2223(95.6) | .4614(95.6) | .2150(95.6) | .4519(96.3) | |||
(5,0*28,5) | .6970(96.3) | .2392(95.6) | .5024(95.8) | .6639(94.8) | .2384(95.6) | .4969(95.7) | .2288(95.5) | .4824(94.4) | |||
26 | (14,0*25) | .8351(95.6) | .2796(95.6) | .5941(95.7) | .7727(95.1) | .2789(95.5) | .5782(95.4) | .2644(95.6) | .5519(94.3) | ||
(0,12,14,0*13) | .6965(95.8) | .2465(96.1) | .5173(96.1) | .6510(94.0) | .2449(96.1) | .5026(96.0) | .2320(96.0) | .4908(94.1) | |||
(0*25,14) | .6685(95.5) | .2246(95.6) | .4680(95.6) | .6223(96.3) | .2242(95.3) | .4645(95.6) | .2166(95.6) | .4487(94.7) | |||
(7,0*24,7) | .7739(95.5) | .2511(95.7) | .5230(95.5) | .6895(95.4) | .2507(95.7) | .5163(95.5) | .2395(95.6) | .4971(94.5) | |||
20 | (20,0*19) | .9547(96.0) | .3126(95.8) | .6646(95.7) | .9035(95.2) | .3104(96.0) | .6425(95.7) | .2889(95.8) | .6324(95.8) | ||
(0*9,20,0*10) | .7345(95.7) | .2710(95.8) | .5745(95.9) | .7060(94.3) | .2695(95.9) | .5530(95.8) | .2505(95.7) | .5379(95.2) | |||
(0*19,20) | .6939(95.6) | .2411(95.6) | .5069(95.6) | .6244(95.1) | .2406(95.6) | .4989(95.7) | .2306(95.6) | .4804(95.1) | |||
(10,0*18,10) | .7878(95.9) | .2599(95.8) | .5424(95.7) | .7267(94.6) | .2578(95.5) | .5370(95.8) | .2465(95.5) | .5316(96.1) | |||
1.75 | 20 | 14 | (6,0*13) | 1.0451(95.4) | .3678(95.7) | .8021(95.7) | .9937(92.7) | .3636(95.7) | .7593(95.8) | .3307(95.8) | .7323(94.6) |
(0*6,6,0*7) | .9452(95.4) | .3456(95.4) | .7485(95.5) | .8686(93.1) | .3403(95.2) | .7110(95.6) | .3118(95.5) | .6796(93.9) | |||
(0*13,6) | .9140(95.4) | .3180(95.3) | .6821(95.4) | .8308(93.9) | .3146(95.2) | .6584(95.4) | .2938(95.3) | .6194(93.7) | |||
(3,0*12,3) | .9428(95.9) | .3343(95.7) | .7250(95.7) | .8968(93.7) | .3314(95.7) | .6980(95.7) | .3074(95.7) | .6638(94.0) | |||
12 | (8,0*11) | 1.1992(95.8) | .4162(95.8) | .9267(96.1) | 1.0982(93.0) | .4112(95.8) | .8635(96.0) | .3687(96.1) | .8168(94.8) | ||
(0*5,8,0*6) | .9605(95.6) | .3759(95.8) | .8292(95.8) | .9179(92.5) | .3686(95.8) | .7737(96.0) | .3314(95.9) | .7319(93.9) | |||
(0*11,8) | .9573(95.9) | .3430(95.6) | .7450(95.6) | .8448(93.6) | .3392(95.6) | .7098(95.6) | .3116(95.6) | .6709(94.8) | |||
(4,0*10,4) | 1.0448(95.5) | .3568(95.3) | .7757(95.3) | .9471(93.3) | .3539(95.3) | .7386(95.4) | .3231(95.1) | .7076(94.9) | |||
10 | (10,0*9) | 1.2379(96.4) | .4338(96.4) | .9621(96.2) | 1.2197(92.7) | .4256(96.3) | .8875(96.4) | .3724(96.3) | .8705(94.3) | ||
(0*4,10,0*5) | 1.0384(95.9) | .3953(95.5) | .8705(95.5) | .9850(92.7) | .3870(95.5) | .8029(95.5) | .3421(95.4) | .7789(94.1) | |||
(0*9,10) | .9936(95.6) | .3767(95.9) | .8245(95.9) | .8596(93.5) | .3696(95.7) | .7723(95.9) | .3319(95.8) | .7238(94.5) | |||
(5,0*8,5) | 1.1194(95.6) | .3946(95.9) | .8646(95.8) | .9893(93.3) | .3881(95.8) | .8155(96.0) | .3499(95.9) | .7621(94.7) | |||
30 | 22 | (8,0*21) | .8001(95.7) | .2812(95.7) | .5978(95.7) | .7793(95.0) | .2797(95.7) | .5846(96.0) | .2628(95.9) | .5566(95.1) | |
(0*10,8,0*11) | .7154(95.5) | .2615(95.6) | .5547(95.8) | .6972(94.8) | .2610(95.7) | .5377(95.7) | .2454(95.7) | .5191(95.1) | |||
(0*21,8) | .6956(95.6) | .2434(95.7) | .5104(95.8) | .6686(94.9) | .2428(95.8) | .5040(95.8) | .2319(95.7) | .4871(95.8) | |||
(4,0*20,4) | .7595(95.8) | .2643(95.3) | .5571(95.1) | .7190(94.7) | .2627(95.3) | .5498(95.4) | .2505(95.3) | .5276(95.4) | |||
18 | (12,0*17) | .9701(95.5) | .3285(95.5) | .7055(95.7) | .8718(94.1) | .3258(95.5) | .6814(95.8) | .3024(95.7) | .6451(94.4) | ||
(0*8,12,0*9) | .8053(95.2) | .2997(95.6) | .6425(95.7) | .7455(94.4) | .2972(95.6) | .6142(95.5) | .2746(95.4) | .5772(94.4) | |||
(0*17,12) | .7514(95.6) | .2637(95.5) | .5571(95.5) | .6753(94.5) | .2633(95.5) | .5433(95.5) | .2491(95.5) | .5228(94.9) | |||
(6,0*16,6) | .8395(95.5) | .2850(95.7) | .6005(95.7) | .7568(94.5) | .2837(95.7) | .5875(95.7) | .2667(95.7) | .5639(94.9) | |||
14 | (16,0*13) | 1.0266(95.5) | .3636(95.5) | .7923(95.5) | .9752(92.6) | .3594(95.5) | .7521(95.5) | .3272(95.6) | .7249(94.5) | ||
(0*6,16,0*7) | .8220(95.7) | .3201(96.4) | .6897(96.5) | .7990(93.3) | .3152(96.3) | .6526(96.5) | .2885(96.5) | .6313(93.5) | |||
(0*13,16) | .7477(95.9) | .2913(95.8) | .6260(95.7) | .6859(93.2) | .2887(95.8) | .5974(95.8) | .2673(95.8) | .5659(93.3) | |||
(8,0*12,8) | .8537(95.8) | .3088(95.8) | .6633(95.8) | .7800(93.1) | .3061(95.8) | .6403(95.8) | .2846(95.7) | .6028(93.3) | |||
40 | 30 | (10,0*29) | .6985(95.8) | .2440(95.6) | .5142(95.8) | .6638(94.8) | .2434(95.7) | .5050(95.7) | .2323(95.6) | .4890(94.8) | |
(0*14,10,0*15) | .6269(95.9) | .2239(95.6) | .4692(95.7) | .5972(94.8) | .2231(95.6) | .4604(95.7) | .2136(95.6) | .4476(94.9) | |||
(0*29,10) | .6148(95.6) | .2100(95.6) | .4374(95.6) | .5741(95.4) | .2094(95.6) | .4344(95.7) | .2033(95.6) | .4214(95.8) | |||
(5,0*28,5) | .6425(95.7) | .2228(95.8) | .4651(95.8) | .6132(95.5) | .2226(96.0) | .4611(96.0) | .2134(95.8) | .4486(96.2) | |||
26 | (14,0*25) | .8051(95.9) | .2655(95.9) | .5564(95.9) | .7198(94.1) | .2654(96.0) | .5458(95.9) | .2508(96.0) | .5254(94.2) | ||
(0,12,14,0*13) | .6639(95.5) | .2380(95.7) | .4992(95.6) | .6238(94.7) | .2372(95.7) | .4867(95.8) | .2241(95.7) | .4674(94.9) | |||
(0*25,14) | .6537(95.5) | .2212(95.5) | .4619(95.6) | .5788(93.9) | .2212(95.4) | .4547(95.6) | .2136(95.6) | .4359(94.7) | |||
(7,0*24,7) | .6762(95.8) | .2300(95.7) | .4817(96.0) | .6354(95.4) | .2297(95.7) | .4749(95.9) | .2213(95.9) | .4619(94.7) | |||
20 | (20,0*19) | .8905(95.9) | .2970(95.9) | .6311(96.1) | .8292(94.8) | .2962(96.0) | .6117(96.0) | .2765(96.0) | .5988(95.3) | ||
(0*9,20,0*10) | .7149(95.8) | .2644(95.8) | .5602(95.8) | .6835(94.2) | .2627(95.8) | .5404(95.8) | .2453(95.8) | .5224(94.9) | |||
(0*19,20) | .6463(95.4) | .2355(95.5) | .4963(95.6) | .5868(94.9) | .2349(95.6) | .4814(95.5) | .2223(95.5) | .4662(95.3) | |||
(10,0*18,10) | .7234(95.3) | .2475(95.2) | .5232(95.3) | .6684(95.1) | .2469(95.2) | .5139(95.3) | .2350(95.3) | .4950(95.5) |
Remission times for patients receiving a particular leukemia therapy
30 | 24 | 30 | (6, 0*23) | 7.0845 | 6.8382 | 7.3673 | 6.2261 | 6.4233 | 8.7476 | 6.2968 |
14 | 30 | (3, 0*10, 3, 0*2) | 8.0966 | 7.7379 | 8.5409 | 7.0116 | 7.2485 | 10.4538 | 7.1166 | |
30 | 24 | 30 | (6, 0*23) | .3752 | .3561 | .3963 | .3064 | .3228 | .4887 | .3123 |
14 | 30 | (3, 0*10, 3, 0*2) | .4474 | .4229 | .4760 | .3696 | .3875 | .5798 | .3776 | |
30 | 24 | 30 | (6, 0*23) | .0959 | .1004 | .1135 | .0910 | .1090 | .1119 | .0722 |
14 | 30 | (3, 0*10, 3, 0*2) | .0802 | .0853 | .0972 | .0746 | .0930 | .0953 | .0564 |