TEXT SIZE

search for



CrossRef (0)
Estimation of length biased exponential distribution based on progressive hybrid censoring
Communications for Statistical Applications and Methods 2024;31:661-675
Published online November 30, 2024
© 2024 Korean Statistical Society.

Kyeongjun Lee1,a

aDepartment of Mathematics and Big Data Science, Kumoh National Institue of Technology, Korea
Correspondence to: 1 Department of Mathematics and Big Data Science, Kumoh National Institue of Technology, Gumi 39177, Korea. E-mail: leekj@kumoh.ac.kr
Received July 12, 2024; Revised August 20, 2024; Accepted August 24, 2024.
 Abstract
The concept of length-biased distribution find various applications in biomedical area such as family history and disease, survival and intermediate events and latency period of AIDS due to blood transfusion. Also, there are many situations in biomedical analysis in which units are removed or lost from experimentation before observed. In this paper, therefore, we consider the maximum likelihood estimator (MLE) and Bayesian estimators of the unknown parameter, reliability and hazard functions of the length biased exponential distribution (LBED) under progressive hybrid censoring (PHC) scheme. We derive the Bayesian estimators of the unknown parameter, reliability and hazard functions based on flexible loss functions. Additionally, we derive the Bayesian estimators using the Lindley’s approximation and Markov chain Mote Carlo (MCMC) methods. In particular, the MCMC method is used to obtain the credible interval. To compare the proposed estimators, the Monte Carlo simulation method is conducted. Finally, the leukemia patients dataset based on PHC scheme is analyzed.
Keywords : Bayesian estimation, exponential distribution, length biased exponential distribution, progressive hybrid censoring
1. Introduction

In epidemiological studies, a common objective is to estimate the distribution of intervals from initiation to endpoints or to compare the distributions of these survival times across two or more well-defined groups. When it is feasible to follow all subjects in a group prospectively, standard techniques of survival analysis can be applied. However, subjects are often identified as having experienced initiation through a cross-sectional study at a specific time point. Consequently, only those who have survived until that time are recruited into the study, whereas those who have not will not be included in this initial recruitment phase and, indeed, will not even be identified.

The intervals from initiation to failure or censoring are well known to be length-biased, meaning that the observed time intervals tend to be longer than those arising from the true underlying failure or censoring distributions. The concept of length-biased distribution finds various applications in the biomedical field, such as in family history and disease, survival and intermediate events, and the latency period of AIDS due to blood transfusion (Gupta and Akman, 1998). Significant work has been done to characterize the relationships between original distributions and their length-biased versions.

If a random variable X follows any distribution with probability density function f (x) then the probability density function of length biased distribution of X is defined as g(x) = x f (x)/E(X). Then, if a random variable X follows an exponential distribution, X is said to have the LBED if its probability density function (pdf) and cumulative distribution function (cdf) are given by

g(x;θ)=xθ2e-xθ,         x>0,   θ>0,G(x;θ)=1-[xθe-xθ+e-xθ],         x>0,   θ>0.

The reliability and hazard function of the LBED are given by:

Re(t)=e-tθ(1+tθ),
H(t)=-1θ2+1(θ+t)2.

In reliability and survival analysis, there are many situations in which units are removed or lost from experimentation before they are observed, either carelessly or unconsciously. This scenario is referred to as censoring. Recently, work on progressive hybrid censoring (PHC) has become quite popular in life-testing and reliability studies. The PHC scheme can be described as follows. If the first failure is observed (X1:m:n), the R1 survival units are removed randomly from the test. And, if the second failure is observed (X2:m:n), the R2 survival units are removed randomly from the test. Finally, survival test is stopped at a mimimum time of Xm:m:n and T, where T ∈ (0,∞) and integer m are pre-assigned. In PHC scheme, the total time required to terminate the experiment does not exceed T (Figure 1).

The estimation of length-biased distributions under censoring schemes has been extensively studied by many researchers. Alemdjrodo and Zhao (2020) considered empirical likelihood inference for the mean residual life with length-biased and right-censored data. Shen et al. (2022) provided maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction. Alotaibi et al. (2022) investigated inference for a Kavya-Manoharan inverse length-biased exponential distribution under a progressive-stress model based on progressive type-II censoring. Chen and Qiu (2023) analyzed length-biased and partly interval-censored survival data with mismeasured covariates. Li et al. (2024) conducted a change point test for length-biased lognormal distributions under random right censoring.

The objective of this paper is to derive the MLE of the unknown parameter, reliability, and hazard function of a LBED based on PHC data. Furthermore, we consider the Bayesian estimators of the unknown parameter, reliability, and hazard function of LBED using flexible priors under PHC data. As Bayesian estimators cannot be obtained in closed form, we provide Bayesian estimates using Lindley’s approximation method. Monte Carlo simulations are conducted to compare the performances among different methods.

The paper is organized as follows. In Section 2, we derive the MLE and confidence interval for the unknown parameter, reliability, and hazard functions under PHC data. In Section 3, we obtain the posterior densities of unknown parameter for this model and derive Bayesian estimators for the unknown parameter, reliability, and hazard functions under the squared error loss function (SELF) and linex loss function (LLF). A numerical study is presented in Section 4. Finally, Section 5 concludes the paper.

2. Maximum likelihood estimation

2.1. Maximum likelihood estimator

In this subsection, we provide the MLE of the unknown parameter, reliability and hazard functions. Consider a randomly selected sample of n units are put on test. The integer m < n is pre-fixed and progressive censoring scheme R = (R1, R2, . . . , Rm) are m pre-fixed integers satisfying R1+· · ·+Rm = n. At the time of first failure X1:m:n, R1 of the remaining units are randomly removed. If the mth failure Xm:m:n occurs before the time point T, the experiment stops at the time point Xm:m:n (Case I). On the other hand suppose the mth failure does not occur before time point T and only d failures occur before the time point T, where 0 < d < m, then at the time point T all the remaining Rd* units are removed and the experiment terminates at the time point T (Case II). Note that Rd*=n-(R1++Rd)-d. Based on the observed data, the likelihood function is

L(θ)=Ki=1τ[g(xi:m:n)[1-G(xi:m:n)]Ri]U1(T,θ),

where τ = m and U1(T, θ) = 1 for Case I, τ = d and U1(T,θ)=[1-G(T)]Rd* for Case II. The logarithm of (2.1), can be written (without the constant terms) as

log L(θ)=-2τlog θ+i=1τ[log xi:m:n-xi:m:nθ(1+Ri)+Rilog (1+xi:m:nθ)]+U2(T,θ),

where U2(T, θ) = 0 for Case I and τ = m, U2(T,θ)=-(1/θ)TRd*+Rd*log(1+(T/θ)) for Case II. It is assumed that d > 0, otherwise the MLE does not exist. Taking derivative with respect to θ of (2.2) and equating them to zero we obtain

log L(θ)θ=-2τθ+1θ2i=1τxi:m:n(1+Ri)-i=1τRixi:m:n1θ(xi:m:n+θ)+U3(T,θ),

where U3(T, θ) = 0 for Case I and U3(T,θ)=1θ2TRd*-TRd*1θ(T+θ) for Case II. Then, the MLE of θ can be obtained

θ^=i=1τxi:m:n(1+Ri)+U4(T,θ)2τ+i=1τRixi:m:nxi:m:n+θ+U4(T,θ)T+θ,

where U4(T, θ) = 0 for Case I and U4(T,θ)=TRd* for Case II. Using the MLE of θ, the MLE of reliability and hazard functions are obtained as

Re^(t)=e-tθ(1-tθ^)         and         H^(t)=-1θ^2+1(θ^+t)2.

2.2. Approximate confidence interval

In this subsection, we obtain the 100(1 − α)% approximate CI of the unknown parameter, reliability and hazard functions. By using equation (2.2), the second derivative of equation (2.1) with respect to unknown parameter is given by

2log L(θ)θ2=2τθ2-2θ3i=1τxi:m:n(1+Ri)+1θ2i=1τRixi:m:n(xi:m:n+2θ)(xi:m:n+θ)2+U5(T,θ),

where U5(T, θ) = 0 for Case I and U5(T,θ)=-2θ3TRd*+TRd*{1θ2(T+θ)+1θ(T+θ)2} for Case II. Under some mild regularity conditions, MLE of θ is approximately normal with mean θ and, Var^(θ^). A simpler and equally valid procedure is to use the approximation

θ^~N(θ,Var^(θ^)),

where

Var^(θ^)=[-2τθ2+2θ3i=1τxi:m:n(1+Ri)-1θ2i=1τRixi:m:n(xi:m:n+2θ)(xi:m:n+θ)2-U5(T,θ)]-1.

These results yield the 100(1 − α)% approximate CI for the unknown parameter given by

(θ^-Zα/2Var^(θ^),θ^+Zα/2Var^(θ^)),

where Zα/2 is the percentile of the standard normal distribution with right-tail probability α/2.

In order to find the approximate estimates of the variance of reliability and hazard functions, we use the delta method. Then, asymptotically,

Re(t)^-Re(t)Var^(Re^(t))~N(0,1)         and         H(t)^-H(t)Var^(H^(t))~N(0,1),

where

Var^(Re^(t))=t4θ6e-2tθVar^(θ^)         and         Var^(H^(t))=(1θ2-1(θ+t)2)2Var^(θ^).

These results yield the 100(1 − α)% approximate CIs for the reliability and hazard functions given by

(Re^(t)-Zα/2Var^(Re^(t)),Re^(t)+Zα/2Var^(Re^(t))),(H^(t)-Zα/2Var^(H^(t)),H^(t)+Zα/2Var^(H^(t))).
3. Bayesian estimation

In this Section, we consider the Bayesian estimation for the parameter, reliability and hazard functions of the LBED under PHC. We obtain the Bayesian estimators under SELF and LLF. Additionally, we assume that the prior distribution of θ is exponential prior distribution with pdf given by

π(θβ)=1βexp (-θβ),         θ>0,β>0.

Thus, the joint density function of θ and data is given by

π(θ,X)θ-2τexp [-1θi=1τxi:m:n(1+Ri)-θβ]i=1τ(1+xi:m:nθ)U6(T,θ),

where U6(T, θ) = 1 for Case I and τ = d, U6(T,θ)=(1+Tθ)Rd*exp(-1θTRd*) for Case II. Then, under a SELF, the Bayesian estimator of any function of θ, say μ(θ), is

E(μ(θ)X)=0μ(θ)π(θ,X)dθ0π(θ,X)dθ.

Note that (3.1) cannot be obtained analytically. Therefore, we adopt Lindley’s approximation (Lee, 2024).

Using the Lindley’s approximation method, Bayesian estimators of μ(θ) can be obtained as

E[μ(θ^)X]=μ(θ^)+12[(μ^θθ+2μ^θρ^θ)σ^θθ]+12[(μ^θσ^θθ)(L^θθθσ^θθ)],

where

μ^θ=μ(θ^)θ^,         μ^θθ=2μ(θ^)θ^2,         ρ^θ=π(θ^)θ^,         σ^θθ=-1L^θθ,L^θθ=2log L(θ^)θ^2,         L^θθθ=3log L(θ^)θ^3.

For our problem, we have

L^θθ=2τθ2-2θ3i=1τxi:m:n(1+Ri)+1θ2i=1τRixi:m:n(xi:m:n+2θ)(xi:m:n+θ)2+U5(T,θ),ρ^θ=-1β,L^θθθ=-4mθ^3+6θ^4i=1τxi:m:n(1+Ri)-2i=1τRixi:m:n[1(xi:m:n+θ^)θ^3+1θ^2(xi:m:n+θ^)2+1θ^(xi:m:n+θ^)3]+U7(T,θ),

where U7(T, θ) = 0 for Case I and U7(T,θ)=6θ^4TRd*+TRd*[1θ^2(T+θ^)+1θ^(T+θ^)2+1θ^(T+θ^)3] for Case II.

Now, we compute the Bayesian estimator using Lindley approximation method. First, we estimate θ under LF, we observe that μ(θ̂) = e−hθ̂, μ̂θ = −he−hθ̂, μ̂θθ = h2ehθ̂. Using (3.2), the Bayesian estimator of θ under LLF is obtained as

θ^LL=-1hlog [e-hθ^+12{(h2e-hθ^-2he-hθ^ρ^θ)σ^θθ}-12he-hθ^L^θθθσ^θθ2].

The Bayesian estimator of θ under SELF is computed likewise. Under SELF, we observe that μ(θ̂) = θ̂, μ̂θ = μ̂θθ = 0. Using (3.2), the Bayesian estimator of θ under SELF is obtained as

θ^SL=θ^ρ^θσ^θθ+12L^θθθσ^θθ2.

Next, we compute the Bayesian estimator of reliability function under LLF. Here, we observe that μ(θ̂) = ehR̂e(t), μ^θ=-ht2θ^3e-(tθ^+hR^e(t)),μ^θθ=he-hR^e(t)[h(t2θ^3e-tθ^)2+t2θ^4(3-tθ^)e-tθ^]. Using (3.2), the Bayesian estimator of reliability function under LLF is obtained as

Re^(t)LL=-1hlog [e-hRe^(t)+12{(he-hRe^(t)(h(t2θ^3e-tθ^)2+t2θ^4(3-tθ^)e-tθ^)-2ht2θ^3e-(tθ^+hRe^(t))ρ^θ)σ^θθ}-ht22θ^3e-(tθ^+hRe^(t))L^θθθσ^θθ2].

The Bayesian estimators of reliability function under SELF is computed likewise. Under SELF, we observe that μ(θ̂) = R̂e(t), μ(θ^)=Re^(t),μ^θ=t2θ^3e-tθ,μ^θθ=-t2θ^4(3-tθ^)e-tθ^. Using (3.2), the Bayesian estimator of reliability function under SELF is obtained as

Re^(t)SL=Re^(t)-12[{t2θ^4(3-tθ^)e-tθ^-2t2θ^3e-tθ^ρ^θ}σ^θθ]+t22θ^3e-tθ^L^θθθσ^θθ2.

Also, we compute the Bayesian estimator of hazard function under LLF. Here, we observe that μ(θ̂) = eh Ĥ(t), μ^θ=-h(2θ^3-2(θ^+t)3)e-hH^(t),μ^θθ=he-hH^(t)[h(2θ^3-2(θ^+t)3)2+(6θ^4-6(θ^+t)4)]. Using (3.2), the Bayesian estimator of reliability function under LLF is obtained as

H^(t)LL=-1hlog [e-hH^(t)+he-hH^(t)σ^θθ2{[h(2θ^3-2(θ^+t)3)2+(6θ^4-6(θ^+t)4)]-(4θ^3-4(θ^+t)3)ρ^θ}-h(1θ^3-1(θ^+t)3)e-hH^(t)L^θθθσ^θθ2].

The Bayesian estimator of hazard function under SELF is computed likewise. Under SELF, we observe that μ(θ̂) = Ĥ (t), μ^θ=2θ^3-2(θ^+t)3,μ^θθ=-6θ^4+6(θ^+t)4. Using (3.2), the Bayesian estimator of hazard function under SELF is obtained as

H^(t)SL=H^(t)+σ^θθ[(3(θ^+t)4-3θ^4)+(2θ^3-2(θ^+t)3)ρ^θ+(1θ^3-1(θ^+t)3)L^θθθσ^θθ].

Although Lindley approximation method gives Bayesian estimators of the unknown parameter, reliability and hazard functions, it cannot be used to get HPD credible intervals. Therefore, we propose to use the Markov chain Monte Carlo (MCMC) method to obtain Bayesian estimators and also to get HPD credible intervals. To obtain the MCMC samples from the posterior distribution, we use the adaptive Metropolis-Hastings method and consider the normal distribution as the proposal distribution. Let θ̃i denotes the ith the MCMC sample obtained by the posterior distribution. The range of the random variable of the normal distribution is (−∞,∞). Therefore, the MCMC samples are obtained as the logθ̃i. The log θ̂ as initial value is used.

Then, we can obtain the Bayesian estimators by the MCMC samples as follows.

θ^MS=1Ni=B+1N+Bθ˜i,         θ^ML=-1hlog[1Ni=B+1N+Be-hθ˜i],

where N+B is the number of the MCMC samples and B is the burn-in period of the Markov chain. Furthermore, we compute (R(t)1, . . . , R(t)N) and (H(t)1, . . . , H(t)N). Rearrange (θ1, . . . , θN), (R(t)1, . . . , R(t)N) and (H(t)1, . . . , H(t)N) into (θ(1), . . . , θ(N)), (R(t)(1), . . . , R(t)(N)) and (H(t)(1), . . . , H(t)(N)), where (θ(1) < · · · < θ(N)), (R(t)(1) < · · · < R(t)(N)) and (H(t)(1) < · · · < H(t)(N)). Then, the 100(1 − α)% Bayesian credible interval of the unknown parameter, reliability and hazard functions are given by (θ(/2), θ(N(1−α/2))), (R(t)(/2), R(t)(N(1−α/2))) and (H(t)(/2), H(t)(N(1−α/2))).

4. Simulation and example

4.1. Simulation

In this subsection, we use Monte Carlo simulations to compare the proposed estimators. First of all, we consider various n, m, T, and four different progressive censoring schemes; (a) R1 = nm and Ri = 0 for i ≠ 1, (b) Rm/2 = nm and Ri = 0 for im/2, (c) Rm = nm and Ri = 0 for im, (d) R1 = Rm = (nm)/2 and Ri = 0 for i ≠ 1,m.

In each case, we set θ = 1, Re = 0.7538 and H = −0.7500, and replicate the process 1,000 times. Bayesian estimators for the unknown parameter, reliability, and hazard functions are obtained with respect to the SELF and LLF. Bayesian estimators under LLF are computed for two distinct values of h = −0.5 and h = 0.5. Various schemes are considered to calculate the MSE, bias, coverage length (CL), and coverage probability (CP) of the proposed MLE and Bayesian estimators, as detailed in Tables 14.

In Tables 13, the MSEs and biases of all estimators for the unknown parameter, reliability, and hazard functions are presented for various values of n, m, T, and progressive censoring schemes. The MSE and bias of the respective MLE are shown in the fifth column of Tables 13. Additionally, the MSE and bias of the respective Bayesian estimates are presented in the other columns. Specifically, the MSE and bias of the Bayesian estimates obtained using Lindley’s approximation method are tabulated in the sixth to eighth columns, while the MSE and bias of the Bayesian estimates obtained using the MCMC method are provided in the remaining columns.

In Table 4, interval estimates for the parameter, reliability, and hazard functions are presented for various n, m, T, and progressive censoring schemes. The approximate CI are computed using the normality property of the MLE. High posterior density (HPD) credible intervals using the MCMC method are also tabulated. Additionally, Table 4 includes the CL and CP for the interval estimates. The CL and CP for the respective MLEs, calculated using the approximation method, are shown in the fifth to seventh columns. The CL and CP for the Bayesian estimates, obtained using the MCMC method, are displayed in the remaining columns.

In general, the MSE and bias decrease as the sample size and progressive censored sample size increase. For fixed sample size and progressive censored sample size, the MSE and bias typically decrease as the time T increases. Additionally, the estimates for progressive censoring scheme (c) behave quite similarly in terms of bias and MSE. The CL of the approximate CI and the HPD credible interval using the MCMC method tends to decrease with an effective increase in sample size and progressive censored sample size.

In Tables 13, we observe that the Bayesian estimators under SELF and LLF for h = 0.5 behave almost similarly in terms of MSE. However, the Bayesian estimators under LLF are more efficient than those under SELF in terms of MSE. In Table 4, we note that the CL of the approximate CI is wider than the corresponding CL of the HPD credible interval. The CP of the approximate CI is mostly above 95%. In the case of the credible interval, however, the CP in some instances falls below 95%, while in other schemes, it exceeds 95%.

4.2. Example

In order to analyze the real life data set, in this section, we use the proposed estimators in the above section. Lawless (1982) gives the results of a study to investigate the effect of a certain kind of therapy for 30 leukemia patients. After the therapy, patients go into remission for some period of time, the length of which is random. The observed times were 1, 1, 2, 2, 2, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31, 42, 45, 50, 57, 60, 71, 85, 91 weeks. Fattah and Ahmed (2018) indicated that the exponential distribution provides a satisfactory fit. From this data, we take PHC scheme such as Scheme 1: R = (6, 0 * 23), m = 24 and T = 30, and Scheme 2: R = (3, 0 * 10, 3, 0 * 2), m = 14 and T = 30.

We observed that Bayesian estimates of the parameter, reliability and hazard functions using LF with h = −.5 is marginally larger than the corresponding MLE of the parameter, reliability, and hazard functions. Conversely, the Bayesian estimates using the SELF and LLF with h = .5 are smaller than the corresponding MLEs.

5. Conclusions

The concept of length-biased distribution finds various applications in biomedical areas such as family history and disease, survival and intermediate events, and the latency period of AIDS due to blood transfusion. Additionally, in biomedical analysis, there are numerous situations where units are removed or lost from experimentation before being observed. Therefore, in this paper, we consider the MLE and Bayesian estimators of the parameter, reliability, and hazard functions of the LBED under the PHC scheme. We derive the Bayesian estimators of the unknown parameter, reliability, and hazard functions based on flexible loss functions. Furthermore, we derive the Bayesian estimators using Lindley’s approximation and the MCMC methods. In particular, the MCMC method is used to obtain the credible interval.

In general, the MSE and bias decrease as the sample size and progressive censored sample size increase. For fixed sample size and progressive censored sample size, generally, the MSE and bias decrease as the time T increases. Additionally, the CL of the approximate CI and HPD credible interval using MCMC method tends to decrease with the effective increase in sample size and progressive censored sample size.

Among the proposed estimators, we observed that Bayesian estimators are superior to the respective MLE in terms of MSE and bias. Among the Bayesian estimators, we can observe that the Baysian estimators under LLF is more efficient than the Bayesian estimators under SELF in terms of MSE. Also, we observe that the CL of approximate CI is wider than the corresponding CL of HPD credible interval.

Although we focused on the unknown parameter, reliability and hazard functions estimate of the LBED based on PHC scheme, the Bayesian estimation can be applied to any other length biased distributions. The estimation of the parameter, reliability and hazard functions from other length biased distributions based on PHC scheme is of potential interest in future research.

Figures
Fig. 1. Schematic representation of PHC scheme.
TABLES

Table 1

The relative MSEs and biases of parameter estimators with MLE and Bayesian estimators

MSE(bias)

TnmRθ̂θ̂SLθ̂LL(h = −.5)θ̂LL(h =.5)θ̂MSθ̂ML(h = −.5)θ̂ML(h = 5)
1.52014(6,0*13).0826(.0404).0670(.0048).0597(−.0629).0652(.0338).0880(.0949).0614(−.0647).0783(.0262)
(0*6,6,0*7).0602(.0176).0528(.0030).0499(−.0582).0510(.0198).0640(.0678).0519(−.0587).0617(.0145)
(0*13,6).0572(.0300).0491(.0025).0449(−.0446).0495(.0273).0625(.0726).0455(−.0456).0575(.0237)
(3,0*12,3).0664(.0328).0567(.0034).0507(−.0536).0558(.0288).0723(.0807).0515(−.0549).0654(.0235)

12(8,0*11).1183(.0651).0738(.0084).0742(−.0585).0816(.0507).1174(.1225).0808(−.0590).1040(.0440)
(0*5,8,0*6).0703(.0246).0579(.0035).0587(−.0626).0594(.0227).0738(.0743).0597(−.0633).0708(.0162)
(0*11,8).0666(.0448).0495(.0026).0495(−.0325).0563(.0406).0721(.0873).0509(−.0329).0666(.0386)
(4,0*10,4).0846(.0535).0597(.0039).0588(−.0416).0671(.0461).0899(.1026).0613(−.0422).0816(.0425)

10(10,0*9).1421(.0726).0837(.0142).0826(−.0725).0865(.0522).1327(.1354).0945(−.0731).1159(.0422)
(0*4,10,0*5).0755(.0250).0658(.0045).0642(−.0725).0631(.0239).0790(.0807).0654(−.0737).0760(.0145)
(0*9,10).0726(.0406).0504(.0026).0556(−.0386).0610(.0363).0770(.0838).0570(−.0386).0729(.0341)
(5,0*8,5).0994(.0539).0605(.0078).0644(−.0479).0706(.0437).0978(.1039).0724(−.0472).0912(.0404)

3022(8,0*21).0489(.0305).0444(.0020).0392(−.0362).0436(.0292).0540(.0698).0396(−.0371).0500(.0265)
(0*10,8,0*11).0368(.0179).0354(.0013).0325(−.0345).0341(.0182).0398(.0504).0326(−.0350).0382(.0160)
(0*21,8).0358(.0227).0331(.0011).0303(−.0268).0332(.0225).0393(.0531).0305(−.0273).0371(.0212)
(4,0*20,4).0399(.0244).0379(.0015).0332(−.0322).0364(.0239).0440(.0587).0334(−.0329).0412(.0219)

18(12,0*17).0696(.0464).0532(.0030).0515(−.0358).0586(.0425).0756(.0917).0528(−.0367).0695(.0396)
(0*8,12,0*9).0422(.0205).0395(.0016).0376(−.0377).0388(.0212).0454(.0565).0377(−.0383).0439(.0182)
(0*17,12).0393(.0305).0333(.0011).0324(−.0199).0361(.0298).0431(.0609).0327(−.0203).0408(.0291)
(6,0*16,6).0493(.0381).0411(.0017).0389(−.0244).0442(.0365).0545(.0747).0394(−.0250).0507(.0352)

14(16,0*13).0737(.0334).0662(.0046).0561(−.0659).0605(.0295).0801(.0880).0567(−.0681).0712(.0211)
(0*6,16,0*7).0428(−.0006).0466(.0022).0418(−.0672).0393(.0020).0450(.0415).0415(−.0682).0445(−.0044)
(0*13,16).0381(.0119).0342(.0012).0344(−.0388).0353(.0122).0406(.0433).0343(−.0391).0395(.0101)
(8,0*12,8).0495(.0248).0441(.0020).0404(−.0415).0440(.0237).0541(.0639).0408(−.0422).0507(.0207)

4030(10,0*29).0374(.0258).0328(.0011).0315(−.0234).0347(.0256).0410(.0558).0317(−.0238).0389(.0246)
(0*14,10,0*15).0278(.0133).0262(.0007).0253(−.0254).0263(.0139).0297(.0379).0254(−.0257).0289(.0129)
(0*29,10).0266(.0189).0249(.0006).0234(−.0182).0252(.0191).0288(.0422).0234(−.0184).0276(.0186)
(5,0*28,5).0313(.0226).0283(.0008).0269(−.0197).0293(.0227).0341(.0489).0270(−.0200).0326(.0221)

26(14,0*25).0426(.0288).0375(.0015).0349(−.0275).0387(.0283).0467(.0627).0353(−.0281).0442(.0268)
(0,12,14,0*13).0294(.0141).0282(.0008).0270(−.0273).0278(.0150).0314(.0405).0271(−.0276).0307(.0136)
(0*25,14).0274(.0223).0250(.0006).0238(−.0150).0260(.0225).0298(.0458).0239(−.0152).0286(.0222)
(7,0*24,7).0351(.0283).0301(.0009).0294(−.0169).0327(.0281).0385(.0561).0297(−.0172).0366(.0278)

20(20,0*19).0639(.0500).0478(.0025).0467(−.0243).0540(.0468).0692(.0914).0486(−.0248).0645(.0454)
(0*9,20,0*10).0326(.0154).0336(.0011).0303(−.0334).0308(.0171).0350(.0466).0302(−.0339).0340(.0146)
(0*19,20).0287(.0205).0252(.0006).0254(−.0172).0272(.0208).0310(.0442).0254(−.0174).0299(.0203)
(10,0*18,10).0386(.0342).0330(.0011).0318(−.0155).0358(.0337).0428(.0644).0320(−.0160).0401(.0332)

1.752014(6,0*13).0684(.0306).0583(.0036).0536(−.0583).0570(.0261).0736(.0798).0545(−.0595).0672(.0200)
(0*6,6,0*7).0520(.0094).0482(.0024).0469(−.0620).0461(.0089).0548(.0522).0472(−.0627).0534(.0033)
(0*13,6).0488(.0225).0422(.0018).0406(−.0416).0433(.0206).0526(.0602).0411(−.0421).0499(.0178)
(3,0*12,3).0549(.0235).0489(.0025).0451(−.0504).0479(.0210).0595(.0663).0456(−.0513).0554(.0167)

12(8,0*11).0944(.0495).0659(.0047).0671(−.0558).0729(.0405).0981(.1029).0701(−.0563).0896(.0346)
(0*5,8,0*6).0563(.0162).0537(.0029).0508(−.0627).0499(.0160).0601(.0634).0508(−.0638).0576(.0091)
(0*11,8).0542(.0291).0430(.0019).0450(−.0368).0482(.0267).0585(.0673).0454(−.0371).0555(.0244)
(4,0*10,4).0669(.0404).0519(.0029).0513(−.0401).0565(.0359).0721(.0850).0526(−.0407).0667(.0327)

10(10,0*9).1273(.0595).0718(.0153).0783(−.0669).0799(.0431).1174(.1171).0925(−.0656).1083(.0362)
(0*4,10,0*5).0665(.0203).0615(.0039).0590(−.0700).0573(.0200).0703(.0733).0596(−.0712).0678(.0112)
(0*9,10).0605(.0210).0453(.0021).0521(−.0484).0527(.0191).0628(.0613).0531(−.0482).0621(.0158)
(5,0*8,5).0779(.0456).0553(.0032).0584(−.0416).0642(.0397).0827(.0923).0603(−.0418).0772(.0364)

3022(8,0*21).0402(.0213).0381(.0015).0343(−.0358).0366(.0205).0438(.0558).0346(−.0364).0415(.0181)
(0*10,8,0*11).0320(.0111).0318(.0010).0294(−.0358).0298(.0115).0340(.0406).0295(−.0362).0332(.0094)
(0*21,8).0304(.0182).0284(.0008).0267(−.0244).0284(.0179).0328(.0447).0268(−.0247).0315(.0169)
(4,0*20,4).0356(.0205).0326(.0011).0307(−.0283).0330(.0200).0387(.0505).0309(−.0288).0368(.0186)

18(12,0*17).0541(.0332).0460(.0022).0437(−.0366).0478(.0310).0591(.0737).0442(−.0373).0552(.0282)
(0*8,12,0*9).0379(.0161).0363(.0013).0347(−.0373).0351(.0168).0404(.0495).0348(−.0378).0394(.0140)
(0*17,12).0335(.0217).0288(.0008).0293(−.0216).0312(.0213).0360(.0485).0295(−.0218).0348(.0206)
(6,0*16,6).0421(.0293).0352(.0013).0351(−.0242).0384(.0281).0459(.0613).0355(−.0245).0437(.0270)

14(16,0*13).0658(.0270).0574(.0035).0525(−.0598).0555(.0238).0708(.0759).0532(−.0610).0652(.0176)
(0*6,16,0*7).0405(−.0001).0438(.0019).0396(−.0628).0374(.0021).0426(.0397).0393(−.0637).0421(−.0036)
(0*13,16).0326(.0006).0315(.0010).0319(−.0456).0305(.0016).0336(.0301).0317(−.0458).0338(−.0013)
(8,0*12,8).0427(.0180).0383(.0015).0370(−.0395).0388(.0173).0460(.0528).0372(−.0399).0441(.0148)

4030(10,0*29).0304(.0190).0282(.0008).0268(−.0231).0286(.0189).0329(.0453).0269(−.0234).0316(.0180)
(0*14,10,0*15).0235(.0097).0236(.0006).0221(−.0251).0224(.0103).0248(.0321).0221(−.0253).0243(.0092)
(0*29,10).0222(.0149).0214(.0005).0201(−.0170).0212(.0150).0238(.0352).0201(−.0172).0230(.0145)
(5,0*28,5).0246(.0160).0243(.0006).0221(−.0202).0234(.0161).0265(.0389).0221(−.0205).0254(.0153)

26(14,0*25).0379(.0264).0324(.0011).0321(−.0225).0350(.0258).0412(.0562).0325(−.0228).0394(.0249)
(0,12,14,0*13).0260(.0120).0259(.0007).0243(−.0260).0248(.0128).0276(.0364).0244(−.0263).0271(.0115)
(0*25,14).0247(.0192).0215(.0005).0221(−.0130).0236(.0192).0265(.0396).0222(−.0131).0257(.0190)
(7,0*24,7).0282(.0203).0258(.0007).0248(−.0183).0266(.0202).0305(.0445).0250(−.0185).0293(.0197)

20(20,0*19).0501(.0392).0416(.0018).0402(−.0241).0451(.0374).0553(.0763).0406(−.0246).0515(.0359)
(0*9,20,0*10).0307(.0143).0314(.0010).0287(−.0314).0290(.0156).0328(.0435).0286(−.0319).0319(.0135)
(0*19,20).0251(.0096).0227(.0005).0238(−.0240).0240(.0101).0263(.0312).0238(−.0241).0261(.0092)
(10,0*18,10).0311(.0242).0283(.0008).0271(−.0182).0292(.0240).0338(.0505).0272(−.0185).0323(.0232)

Table 2

The relative MSEs and biases of reliability estimators with MLE and Bayesian estimators

MSE(bias)

TnmRR̂eR̂eSLR̂eLL(h = −.5)R̂eLL(h =.5)R̂eMSR̂eML(h = −.5)R̂eML(h = 5)
1.52014(6,0*13).0173(.0025).0118(−.0471).0087(−.0097).0075(.0104).0115(−.0477).0091(−.0148).0077(−.0085)
(0*6,6,0*7).0143(−.0051).0092(−.0409).0074(−.0131).0058(.0066).0090(−.0412).0071(−.0139).0061(−.0092)
(0*13,6).0130(.0023).0078(−.0337).0063(−.0068).0057(.0085).0077(−.0341).0066(−.0095).0058(−.0060)
(3,0*12,3).0148(.0017).0094(−.0398).0073(−.0085).0064(.0089).0092(−.0402).0076(−.0121).0066(−.0075)

12(8,0*11).0212(.0091).0145(−.0505).0105(−.0077).0089(.0143).0140(−.0512).0109(−.0141).0091(−.0066)
(0*5,8,0*6).0160(−.0034).0120(−.0469).0085(−.0133).0071(.0057).0116(−.0470).0090(−.0170).0076(−.0113)
(0*11,8).0142(.0083).0083(−.0306).0068(−.0035).0062(.0117).0082(−.0308).0071(−.0061).0063(−.0028)
(4,0*10,4).0167(.0092).0101(−.0374).0080(−.0045).0071(.0134).0099(−.0378).0083(−.0084).0072(−.0036)

10(10,0*9).0231(.0092).0168(−.0593).0114(−.0088).0094(.0163).0162(−.0605).0119(−.0174).0096(−.0074)
(0*4,10,0*5).0170(−.0043).0137(−.0531).0092(−.0147).0075(.0068).0132(−.0533).0098(−.0192).0081(−.0120)
(0*9,10).0156(.0048).0101(−.0356).0079(−.0071).0069(.0089).0098(−.0355).0082(−.0099).0071(−.0061)
(5,0*8,5).0176(.0074).0112(−.0416).0086(−.0064).0075(.0125).0110(−.0420).0089(−.0108).0076(−.0054)

3022(8,0*21).0112(.0044).0064(−.0281).0053(−.0041).0049(.0098).0063(−.0284).0055(−.0061).0049(−.0033)
(0*10,8,0*11).0092(.0004).0054(−.0251).0044(−.0057).0041(.0061).0053(−.0253).0046(−.0068).0042(−.0047)
(0*21,8).0088(.0032).0047(−.0212).0041(−.0034).0039(.0074).0047(−.0214).0043(−.0043).0039(−.0027)
(4,0*20,4).0096(.0032).0053(−.0244).0045(−.0039).0042(.0082).0053(−.0246).0047(−.0053).0042(−.0032)

18(12,0*17).0148(.0085).0088(−.0327).0072(−.0038).0065(.0124).0087(−.0330).0075(−.0066).0065(−.0028)
(0*8,12,0*9).0105(.0006).0067(−.0286).0053(−.0066).0048(.0066).0066(−.0287).0056(−.0080).0049(−.0053)
(0*17,12).0092(.0067).0049(−.0192).0043(−.0013).0041(.0094).0049(−.0193).0045(−.0023).0041(−.0007)
(6,0*16,6).0112(.0084).0061(−.0234).0053(−.0013).0049(.0115).0061(−.0236).0055(−.0029).0049(−.0007)

14(16,0*13).0164(.0005).0115(−.0472).0084(−.0106).0072(.0094).0111(−.0479).0088(−.0152).0075(−.0090)
(0*6,16,0*7).0115(−.0111).0087(−.0424).0063(−.0156).0053(.0005).0085(−.0425).0066(−.0176).0057(−.0134)
(0*13,16).0098(−.0032).0062(−.0279).0050(−.0087).0045(.0029).0061(−.0279).0053(−.0099).0047(−.0078)
(8,0*12,8).0115(.0012).0069(−.0308).0056(−.0067).0051(.0074).0068(−.0310).0059(−.0086).0052(−.0057)

4030(10,0*29).0091(.0045).0049(−.0203).0043(−.0027).0040(.0079).0048(−.0205).0044(−.0036).0040(−.0020)
(0*14,10,0*15).0072(.0001).0040(−.0189).0035(−.0046).0032(.0044).0040(−.0190).0036(−.0051).0033(−.0039)
(0*29,10).0067(.0034).0034(−.0153).0031(−.0019).0030(.0064).0034(−.0154).0032(−.0023).0030(−.0014)
(5,0*28,5).0076(.0043).0040(−.0171).0035(−.0019).0034(.0074).0039(−.0172).0037(−.0025).0034(−.0013)

26(14,0*25).0098(.0050).0053(−.0229).0046(−.0028).0043(.0092).0053(−.0232).0048(−.0040).0043(−.0020)
(0,12,14,0*13).0075(.0001).0043(−.0202).0036(−.0048).0034(.0049).0042(−.0203).0038(−.0053).0034(−.0039)
(0*25,14).0067(.0051).0034(−.0141).0031(−.0008).0030(.0075).0034(−.0142).0032(−.0011).0030(−.0003)
(7,0*24,7).0083(.0065).0042(−.0168).0038(−.0007).0036(.0090).0042(−.0169).0039(−.0014).0036(−.0002)

20(20,0*19).0131(.0118).0071(−.0258).0060(−.0001).0056(.0144).0070(−.0261).0062(−.0022).0055(.0007)
(0*9,20,0*10).0086(.0000).0053(−.0242).0043(−.0057).0039(.0057).0052(−.0243).0045(−.0064).0040(−.0044)
(0*19,20).0073(.0037).0039(−.0158).0035(−.0021).0033(.0064).0039(−.0158).0036(−.0025).0033(−.0016)
(10,0*18,10).0092(.0087).0048(−.0174).0043(.0002).0041(.0107).0047(−.0175).0044(−.0006).0040(.0008)

1.752014(6,0*13).0154(.0001).0104(−.0430).0078(−.0102).0067(.0080).0102(−.0434).0082(−.0143).0070(−.0091)
(0*6,6,0*7).0129(−.0077).0093(−.0419).0068(−.0140).0058(.0022).0091(−.0420).0072(−.0169).0062(−.0126)
(0*13,6).0114(.0002).0070(−.0309).0057(−.0074).0051(.0063).0069(−.0311).0059(−.0096).0052(−.0067)
(3,0*12,3).0129(−.0007).0083(−.0364).0065(−.0090).0057(.0066).0082(−.0366).0068(−.0120).0059(−.0082)

12(8,0*11).0188(.0050).0129(−.0468).0095(−.0090).0081(.0111).0125(−.0471).0099(−.0143).0084(−.0080)
(0*5,8,0*6).0141(−.0050).0107(−.0443).0077(−.0133).0064(.0046).0104(−.0444).0081(−.0166).0069(−.0115)
(0*11,8).0129(.0024).0081(−.0311).0065(−.0069).0058(.0071).0080(−.0311).0068(−.0092).0060(−.0062)
(4,0*10,4).0146(.0058).0091(−.0345).0072(−.0056).0064(.0105).0090(−.0347).0076(−.0088).0066(−.0049)

10(10,0*9).0212(.0054).0154(−.0550).0107(−.0103).0088(.0128).0149(−.0556).0112(−.0174).0092(−.0091)
(0*4,10,0*5).0158(−.0050).0127(−.0503).0086(−.0144).0071(.0059).0122(−.0505).0092(−.0186).0077(−.0120)
(0*9,10).0141(−.0032).0101(−.0385).0075(−.0118).0063(.0037).0098(−.0383).0079(−.0144).0068(−.0105)
(5,0*8,5).0163(.0064).0107(−.0377).0082(−.0065).0072(.0108).0104(−.0378).0086(−.0101).0074(−.0056)

3022(8,0*21).0097(.0014).0056(−.0262).0047(−.0053).0043(.0071).0056(−.0264).0049(−.0069).0044(−.0046)
(0*10,8,0*11).0082(−.0021).0049(−.0245).0041(−.0068).0037(.0040).0049(−.0246).0042(−.0079).0038(−.0060)
(0*21,8).0076(.0021).0041(−.0189).0036(−.0034).0034(.0061).0041(−.0190).0037(−.0042).0034(−.0029)
(4,0*20,4).0088(.0021).0049(−.0220).0042(−.0042).0039(.0065).0048(−.0222).0044(−.0053).0040(−.0037)

18(12,0*17).0124(.0047).0075(−.0302).0061(−.0049).0055(.0097).0074(−.0304).0064(−.0072).0056(−.0041)
(0*8,12,0*9).0096(−.0008).0061(−.0273).0049(−.0070).0044(.0053).0060(−.0274).0051(−.0083).0046(−.0059)
(0*17,12).0083(.0033).0047(−.0189).0040(−.0031).0038(.0065).0046(−.0190).0042(−.0040).0038(−.0026)
(6,0*16,6).0099(.0054).0055(−.0219).0047(−.0027).0044(.0087).0054(−.0220).0049(−.0040).0044(−.0021)

14(16,0*13).0150(−.0013).0103(−.0432).0077(−.0109).0066(.0071).0101(−.0436).0081(−.0147).0069(−.0096)
(0*6,16,0*7).0110(−.0102).0081(−.0397).0059(−.0146).0050(.0006).0079(−.0398).0062(−.0165).0054(−.0127)
(0*13,16).0090(−.0079).0061(−.0298).0048(−.0115).0041(−.0003).0060(−.0297).0050(−.0127).0045(−.0105)
(8,0*12,8).0105(−.0009).0066(−.0290).0053(−.0076).0048(.0051).0065(−.0291).0056(−.0093).0050(−.0068)

4030(10,0*29).0077(.0025).0041(−.0185).0036(−.0031).0034(.0062).0041(−.0186).0038(−.0039).0034(−.0027)
(0*14,10,0*15).0063(−.0008).0035(−.0176).0030(−.0046).0028(.0036).0035(−.0177).0031(−.0051).0029(−.0040)
(0*29,10).0058(.0023).0030(−.0137).0027(−.0021).0026(.0052).0030(−.0138).0028(−.0025).0026(−.0017)
(5,0*28,5).0064(.0023).0034(−.0158).0031(−.0026).0029(.0057).0034(−.0158).0032(−.0031).0029(−.0021)

26(14,0*25).0089(.0048).0048(−.0200).0042(−.0024).0039(.0082).0048(−.0201).0043(−.0034).0039(−.0018)
(0,12,14,0*13).0068(−.0002).0039(−.0188).0033(−.0045).0031(.0044).0038(−.0188).0034(−.0050).0031(−.0038)
(0*25,14).0062(.0040).0032(−.0128).0029(−.0012).0028(.0061).0031(−.0129).0030(−.0015).0028(−.0008)
(7,0*24,7).0070(.0038).0036(−.0158).0032(−.0018).0031(.0068).0036(−.0159).0034(−.0024).0031(−.0014)

20(20,0*19).0115(.0087).0063(−.0238).0054(−.0013).0050(.0117).0063(−.0240).0056(−.0030).0050(−.0007)
(0*9,20,0*10).0082(−.0001).0050(−.0228).0041(−.0055).0037(.0052).0049(−.0229).0042(−.0062).0038(−.0044)
(0*19,20).0067(−.0013).0038(−.0179).0033(−.0052).0030(.0028).0038(−.0179).0034(−.0057).0031(−.0046)
(10,0*18,10).0078(.0052).0042(−.0168).0037(−.0014).0035(.0079).0041(−.0169).0038(−.0022).0035(−.0010)

Table 3

The relative MSEs and biases of hazard estimators with MLE and Bayesian estimators

MSE(bias)

TnmRĤĤSLĤLL(h = −.5)ĤLL(h =.5)ĤMSĤML(h = −.5)ĤML(h = 5)
1.52014(6,0*13).0598(.1098).0547(.0294).0324(−.0140).0399(.0288).0576(.1105).0353(.0252).0424(.0396)
(0*6,6,0*7).0460(.0939).0465(.0367).0253(−.0079).0340(.0344).0445(.0941).0279(.0250).0331(.0357)
(0*13,6).0376(.0774).0389(.0205).0243(−.0119).0282(.0203).0368(.0779).0257(.0180).0296(.0260)
(3,0*12,3).0461(.0916).0453(.0253).0276(−.0120).0329(.0247).0449(.0922).0297(.0219).0348(.0325)

12(8,0*11).0768(.1206).0675(.0258).0391(−.0206).0493(.0267).0729(.1210).0427(.0230).0524(.0405)
(0*5,8,0*6).0625(.1100).0547(.0383).0318(−.0045).0403(.0362).0594(.1094).0358(.0312).0432(.0445)
(0*11,8).0409(.0716).0427(.0128).0268(−.0180).0309(.0140).0397(.0718).0282(.0120).0325(.0197)
(4,0*10,4).0503(.0878).0500(.0158).0305(−.0206).0362(.0171).0488(.0883).0324(.0146).0381(.0256)

10(10,0*9).0913(.1419).0734(.0291).0409(−.0244).0537(.0300).0859(.1430).0452(.0252).0575(.0483)
(0*4,10,0*5).0732(.1251).0593(.0422).0334(−.0064).0439(.0398).0689(.1246).0383(.0331).0474(.0499)
(0*9,10).0517(.0844).0500(.0225).0303(−.0115).0366(.0227).0494(.0837).0330(.0198).0388(.0289)
(5,0*8,5).0577(.0979).0546(.0211).0327(−.0184).0397(.0219).0554(.0982).0352(.0189).0420(.0315)

3022(8,0*21).0297(.0640).0321(.0132).0205(−.0155).0231(.0136).0293(.0646).0213(.0114).0242(.0177)
(0*10,8,0*11).0250(.0570).0270(.0165).0173(−.0086).0195(.0159).0246(.0572).0182(.0137).0204(.0185)
(0*21,8).0216(.0481).0250(.0106).0165(−.0115).0180(.0108).0214(.0484).0169(.0093).0187(.0130)
(4,0*20,4).0244(.0552).0273(.0121).0177(−.0129).0196(.0123).0241(.0556).0183(.0105).0205(.0153)

18(12,0*17).0431(.0764).0445(.0137).0279(−.0191).0322(.0149).0419(.0769).0293(.0123).0339(.0210)
(0*8,12,0*9).0322(.0656).0330(.0194).0207(−.0088).0241(.0188).0314(.0656).0223(.0159).0253(.0220)
(0*17,12).0228(.0443).0265(.0058).0175(−.0153).0191(.0069).0225(.0445).0179(.0055).0198(.0090)
(6,0*16,6).0287(.0541).0322(.0064).0210(−.0188).0232(.0079).0282(.0545).0216(.0061).0243(.0113)

14(16,0*13).0582(.1097).0528(.0314).0313(−.0122).0386(.0303).0560(.1104).0343(.0260).0411(.0402)
(0*6,16,0*7).0431(.0963).0393(.0420).0232(.0041).0289(.0383).0417(.0962).0262(.0332).0307(.0429)
(0*13,16).0297(.0637).0312(.0245).0196(−.0015).0228(.0230).0290(.0635).0212(.0206).0239(.0256)
(8,0*12,8).0331(.0703).0347(.0196).0219(−.0103).0252(.0192).0324(.0706).0232(.0168).0264(.0235)

4030(10,0*29).0221(.0464).0257(.0090).0169(−.0124).0185(.0096).0219(.0466).0174(.0080).0192(.0115)
(0*14,10,0*15).0180(.0427).0208(.0131).0136(−.0059).0150(.0127).0178(.0428).0142(.0111).0155(.0138)
(0*29,10).0153(.0346).0186(.0064).0125(−.0102).0134(.0069).0152(.0348).0128(.0057).0138(.0078)
(5,0*28,5).0177(.0388).0212(.0066).0142(−.0120).0152(.0072).0176(.0390).0145(.0059).0158(.0085)

26(14,0*25).0246(.0524).0278(.0094).0181(−.0148).0199(.0101).0243(.0527).0186(.0082).0208(.0128)
(0,12,14,0*13).0195(.0457).0220(.0137).0143(−.0068).0159(.0133).0193(.0458).0150(.0113).0165(.0146)
(0*25,14).0149(.0321).0184(.0035).0124(−.0126).0131(.0044).0148(.0323).0126(.0033).0136(.0053)
(7,0*24,7).0187(.0385).0226(.0039).0151(−.0151).0161(.0050).0186(.0387).0153(.0037).0167(.0065)

20(20,0*19).0332(.0601).0364(.0038).0233(−.0244).0261(.0060).0326(.0606).0239(.0038).0273(.0105)
(0*9,20,0*10).0247(.0550).0263(.0165).0168(−.0080).0191(.0159).0243(.0551).0179(.0130).0200(.0176)
(0*19,20).0176(.0362).0210(.0072).0140(−.0099).0151(.0077).0174(.0362).0144(.0064).0156(.0086)
(10,0*18,10).0216(.0403).0257(.0021).0171(−.0180).0184(.0037).0214(.0405).0174(.0023).0192(.0055)

1.752014(6,0*13).0522(.0996).0490(.0298).0293(−.0099).0358(.0288).0505(.1000).0321(.0258).0381(.0377)
(0*6,6,0*7).0459(.0960).0427(.0386).0254(.0011).0314(.0357).0445(.0959).0285(.0321).0334(.0420)
(0*13,6).0336(.0707).0350(.0214).0220(−.0081).0254(.0207).0329(.0709).0235(.0189).0268(.0255)
(3,0*12,3).0404(.0834).0403(.0261).0248(−.0079).0293(.0250).0394(.0837).0268(.0227).0310(.0314)

12(8,0*11).0674(.1109).0605(.0283).0354(−.0149).0443(.0283).0643(.1108).0390(.0250).0472(.0398)
(0*5,8,0*6).0553(.1031).0489(.0376).0287(−.0030).0361(.0352).0529(.1027).0324(.0307).0387(.0426)
(0*11,8).0401(.0726).0408(.0211).0253(−.0088).0297(.0208).0389(.0724).0273(.0187).0314(.0257)
(4,0*10,4).0453(.0807).0453(.0183).0279(−.0154).0330(.0188).0439(.0809).0299(.0167).0348(.0258)

10(10,0*9).0829(.1312).0688(.0323).0388(−.0175).0504(.0323).0782(.1313).0433(.0282).0541(.0476)
(0*4,10,0*5).0670(.1180).0555(.0412).0316(−.0049).0410(.0387).0634(.1175).0362(.0327).0443(.0479)
(0*9,10).0516(.0903).0477(.0339).0282(−.0012).0351(.0320).0493(.0893).0317(.0287).0375(.0379)
(5,0*8,5).0551(.0895).0523(.0212).0316(−.0150).0383(.0217).0526(.0892).0343(.0192).0407(.0298)

3022(8,0*21).0260(.0593).0283(.0156).0181(−.0106).0204(.0153).0257(.0597).0190(.0136).0214(.0188)
(0*10,8,0*11).0228(.0552).0247(.0190).0158(−.0047).0179(.0179).0225(.0553).0168(.0160).0187(.0202)
(0*21,8).0185(.0427).0216(.0103).0143(−.0093).0156(.0104).0184(.0429).0148(.0093).0162(.0122)
(4,0*20,4).0223(.0499).0254(.0127).0166(−.0097).0183(.0126).0221(.0502).0172(.0113).0191(.0151)

18(12,0*17).0363(.0698).0377(.0157).0237(−.0145).0274(.0161).0355(.0701).0251(.0140).0288(.0212)
(0*8,12,0*9).0292(.0623).0303(.0201).0191(−.0067).0221(.0192).0286(.0624).0205(.0166).0232(.0220)
(0*17,12).0216(.0435).0248(.0101).0163(−.0096).0179(.0104).0213(.0435).0169(.0092).0187(.0122)
(6,0*16,6).0256(.0504).0288(.0093).0188(−.0137).0208(.0101).0252(.0506).0195(.0087).0217(.0129)

14(16,0*13).0515(.1000).0481(.0315).0287(−.0082).0351(.0302).0498(.1003).0315(.0267).0374(.0384)
(0*6,16,0*7).0398(.0901).0371(.0394).0221(.0038).0273(.0359).0386(.0900).0249(.0315).0289(.0402)
(0*13,16).0292(.0674).0296(.0312).0182(.0047).0217(.0284).0285(.0671).0202(.0259).0228(.0311)
(8,0*12,8).0316(.0663).0331(.0219).0209(−.0058).0241(.0209).0309(.0663).0224(.0189).0253(.0246)

4030(10,0*29).0186(.0419).0218(.0098).0144(−.0096).0157(.0099).0185(.0421).0149(.0087).0163(.0116)
(0*14,10,0*15).0158(.0396).0183(.0130).0120(−.0046).0132(.0124).0157(.0397).0126(.0111).0137(.0134)
(0*29,10).0132(.0309).0162(.0066).0109(−.0082).0116(.0068).0131(.0310).0112(.0060).0120(.0077)
(5,0*28,5).0153(.0356).0183(.0080).0123(−.0088).0132(.0081).0152(.0357).0126(.0072).0136(.0093)

26(14,0*25).0218(.0457).0252(.0082).0165(−.0131).0181(.0089).0216(.0459).0170(.0075).0188(.0111)
(0,12,14,0*13).0175(.0423).0199(.0129).0130(−.0061).0144(.0124).0173(.0424).0137(.0108).0149(.0136)
(0*25,14).0140(.0293).0173(.0045).0117(−.0099).0124(.0051).0139(.0293).0119(.0044).0128(.0059)
(7,0*24,7).0162(.0359).0195(.0063).0130(−.0110).0139(.0068).0161(.0360).0133(.0058).0145(.0081)

20(20,0*19).0295(.0553).0326(.0064).0210(−.0193).0234(.0079).0290(.0556).0217(.0062).0246(.0116)
(0*9,20,0*10).0230(.0517).0248(.0158).0159(−.0072).0180(.0152).0226(.0518).0169(.0128).0188(.0169)
(0*19,20).0174(.0404).0198(.0146).0129(−.0028).0143(.0138).0172(.0404).0137(.0125).0149(.0149)
(10,0*18,10).0189(.0385).0223(.0057).0148(−.0129).0160(.0065).0187(.0386).0152(.0054).0166(.0081)

Table 4

The relative CLs and CPs of interval estimators with MLE and Bayesian estimators

CL(CP)

TnmRθ̂R̂eĤθ̂MSR̂eML(h = −.5)ĤML(h = −.5)R̂eML(h = .5)ĤML(h = .5)
1.52014(6,0*13)1.1120(96.1).3861(95.3).8507(95.4)1.0814(92.5).3809(95.3).8033(95.7).3449(95.4).7748(94.9)
(0*6,6,0*7).9740(95.8).3476(95.7).7485(95.5).9230(92.8).3446(95.8).7074(95.5).3103(95.7).7102(94.3)
(0*13,6).9595(96.2).3269(95.7).7027(95.7).9016(93.7).3248(95.8).6813(95.7).3030(95.8).6526(93.8)
(3,0*12,3)1.0233(95.6).3513(95.9).7582(96.0).9766(93.5).3466(95.9).7292(96.2).3201(96.2).7042(94.8)

12(8,0*11)1.2655(95.7).4364(95.8).9709(95.7)1.2081(92.2).4284(95.7).9022(95.5).3814(95.8).8640(94.5)
(0*5,8,0*6)1.0991(95.7).4017(95.6).8836(95.6).9695(92.8).3949(95.7).8268(95.5).3518(95.4).7737(94.4)
(0*11,8)1.0543(95.7).3503(95.3).7598(95.4).9252(93.8).3480(95.5).7292(95.3).3218(95.4).6869(95.0)
(4,0*10,4)1.1376(95.7).3735(95.8).8082(95.7)1.0387(93.3).3694(95.8).7682(95.6).3364(95.8).7423(94.8)

10(10,0*9)1.3137(96.3).4505(95.7)1.0068(95.7)1.3290(92.9).4406(95.5).9138(95.8).3802(95.8).9002(94.5)
(0*4,10,0*5)1.1301(96.0).4101(95.5).9017(95.5)1.0266(93.0).4023(95.5).8264(95.3).3516(95.4).8057(94.1)
(0*9,10)1.1099(95.3).3838(95.4).8407(95.4).9319(93.5).3792(95.4).7962(95.5).3421(95.4).7445(94.7)
(5,0*8,5)1.1893(95.5).3988(95.7).8744(95.7)1.0763(93.7).3928(95.7).8249(95.8).3562(95.7).7764(93.8)

3022(8,0*21).8993(95.6).2961(95.6).6289(95.5).8470(95.1).2941(95.5).6135(95.7).2760(95.5).5930(95.4)
(0*10,8,0*11).7718(95.8).2752(96.0).5839(95.8).7392(94.9).2729(95.8).5671(95.8).2566(95.8).5440(95.0)
(0*21,8).7587(96.0).2597(96.1).5473(95.9).7219(94.7).2589(96.1).5402(96.1).2472(96.1).5233(95.1)
(4,0*20,4).7986(95.8).2747(95.8).5823(96.0).7746(94.9).2736(95.8).5702(95.8).2594(95.8).5468(95.1)

18(12,0*17)1.0238(96.2).3493(95.9).7549(96.0).9544(93.5).3469(95.9).7273(96.0).3201(96.0).7011(94.2)
(0*8,12,0*9).8587(96.0).3088(95.7).6596(95.5).7797(94.0).3064(95.7).6330(95.6).2818(95.5).6032(93.8)
(0*17,12).8169(95.4).2717(95.5).5745(95.5).7311(94.8).2715(95.5).5640(95.4).2593(95.5).5402(95.2)
(6,0*16,6).9274(95.5).3041(95.4).6474(95.4).8219(95.2).3023(95.4).6301(95.4).2852(95.4).5963(94.9)

14(16,0*13)1.0703(95.7).3798(95.9).8350(95.9)1.0507(92.5).3744(95.7).7892(95.8).3405(95.8).7607(95.0)
(0*6,16,0*7).8364(96.0).3292(95.9).7143(96.0).8220(93.0).3243(96.1).6737(96.0).2935(95.9).6491(93.9)
(0*13,16).7889(95.9).2970(95.6).6349(95.6).7241(93.2).2931(95.6).6125(95.7).2728(95.6).5842(93.4)
(8,0*12,8).8908(96.0).3127(95.8).6690(95.6).8411(93.5).3101(95.8).6508(95.8).2913(95.8).6172(94.3)

4030(10,0*29).7852(96.1).2638(95.9).5546(95.9).7184(93.8).2632(95.9).5455(95.9).2503(95.9).5311(94.4)
(0*14,10,0*15).6854(95.7).2400(95.7).5019(95.7).6298(94.8).2392(95.7).4946(95.8).2279(95.6).4769(95.1)
(0*29,10).6625(95.5).2235(95.7).4651(95.7).6188(95.4).2223(95.6).4614(95.6).2150(95.6).4519(96.3)
(5,0*28,5).6970(96.3).2392(95.6).5024(95.8).6639(94.8).2384(95.6).4969(95.7).2288(95.5).4824(94.4)

26(14,0*25).8351(95.6).2796(95.6).5941(95.7).7727(95.1).2789(95.5).5782(95.4).2644(95.6).5519(94.3)
(0,12,14,0*13).6965(95.8).2465(96.1).5173(96.1).6510(94.0).2449(96.1).5026(96.0).2320(96.0).4908(94.1)
(0*25,14).6685(95.5).2246(95.6).4680(95.6).6223(96.3).2242(95.3).4645(95.6).2166(95.6).4487(94.7)
(7,0*24,7).7739(95.5).2511(95.7).5230(95.5).6895(95.4).2507(95.7).5163(95.5).2395(95.6).4971(94.5)

20(20,0*19).9547(96.0).3126(95.8).6646(95.7).9035(95.2).3104(96.0).6425(95.7).2889(95.8).6324(95.8)
(0*9,20,0*10).7345(95.7).2710(95.8).5745(95.9).7060(94.3).2695(95.9).5530(95.8).2505(95.7).5379(95.2)
(0*19,20).6939(95.6).2411(95.6).5069(95.6).6244(95.1).2406(95.6).4989(95.7).2306(95.6).4804(95.1)
(10,0*18,10).7878(95.9).2599(95.8).5424(95.7).7267(94.6).2578(95.5).5370(95.8).2465(95.5).5316(96.1)

1.752014(6,0*13)1.0451(95.4).3678(95.7).8021(95.7).9937(92.7).3636(95.7).7593(95.8).3307(95.8).7323(94.6)
(0*6,6,0*7).9452(95.4).3456(95.4).7485(95.5).8686(93.1).3403(95.2).7110(95.6).3118(95.5).6796(93.9)
(0*13,6).9140(95.4).3180(95.3).6821(95.4).8308(93.9).3146(95.2).6584(95.4).2938(95.3).6194(93.7)
(3,0*12,3).9428(95.9).3343(95.7).7250(95.7).8968(93.7).3314(95.7).6980(95.7).3074(95.7).6638(94.0)

12(8,0*11)1.1992(95.8).4162(95.8).9267(96.1)1.0982(93.0).4112(95.8).8635(96.0).3687(96.1).8168(94.8)
(0*5,8,0*6).9605(95.6).3759(95.8).8292(95.8).9179(92.5).3686(95.8).7737(96.0).3314(95.9).7319(93.9)
(0*11,8).9573(95.9).3430(95.6).7450(95.6).8448(93.6).3392(95.6).7098(95.6).3116(95.6).6709(94.8)
(4,0*10,4)1.0448(95.5).3568(95.3).7757(95.3).9471(93.3).3539(95.3).7386(95.4).3231(95.1).7076(94.9)

10(10,0*9)1.2379(96.4).4338(96.4).9621(96.2)1.2197(92.7).4256(96.3).8875(96.4).3724(96.3).8705(94.3)
(0*4,10,0*5)1.0384(95.9).3953(95.5).8705(95.5).9850(92.7).3870(95.5).8029(95.5).3421(95.4).7789(94.1)
(0*9,10).9936(95.6).3767(95.9).8245(95.9).8596(93.5).3696(95.7).7723(95.9).3319(95.8).7238(94.5)
(5,0*8,5)1.1194(95.6).3946(95.9).8646(95.8).9893(93.3).3881(95.8).8155(96.0).3499(95.9).7621(94.7)

3022(8,0*21).8001(95.7).2812(95.7).5978(95.7).7793(95.0).2797(95.7).5846(96.0).2628(95.9).5566(95.1)
(0*10,8,0*11).7154(95.5).2615(95.6).5547(95.8).6972(94.8).2610(95.7).5377(95.7).2454(95.7).5191(95.1)
(0*21,8).6956(95.6).2434(95.7).5104(95.8).6686(94.9).2428(95.8).5040(95.8).2319(95.7).4871(95.8)
(4,0*20,4).7595(95.8).2643(95.3).5571(95.1).7190(94.7).2627(95.3).5498(95.4).2505(95.3).5276(95.4)

18(12,0*17).9701(95.5).3285(95.5).7055(95.7).8718(94.1).3258(95.5).6814(95.8).3024(95.7).6451(94.4)
(0*8,12,0*9).8053(95.2).2997(95.6).6425(95.7).7455(94.4).2972(95.6).6142(95.5).2746(95.4).5772(94.4)
(0*17,12).7514(95.6).2637(95.5).5571(95.5).6753(94.5).2633(95.5).5433(95.5).2491(95.5).5228(94.9)
(6,0*16,6).8395(95.5).2850(95.7).6005(95.7).7568(94.5).2837(95.7).5875(95.7).2667(95.7).5639(94.9)

14(16,0*13)1.0266(95.5).3636(95.5).7923(95.5).9752(92.6).3594(95.5).7521(95.5).3272(95.6).7249(94.5)
(0*6,16,0*7).8220(95.7).3201(96.4).6897(96.5).7990(93.3).3152(96.3).6526(96.5).2885(96.5).6313(93.5)
(0*13,16).7477(95.9).2913(95.8).6260(95.7).6859(93.2).2887(95.8).5974(95.8).2673(95.8).5659(93.3)
(8,0*12,8).8537(95.8).3088(95.8).6633(95.8).7800(93.1).3061(95.8).6403(95.8).2846(95.7).6028(93.3)

4030(10,0*29).6985(95.8).2440(95.6).5142(95.8).6638(94.8).2434(95.7).5050(95.7).2323(95.6).4890(94.8)
(0*14,10,0*15).6269(95.9).2239(95.6).4692(95.7).5972(94.8).2231(95.6).4604(95.7).2136(95.6).4476(94.9)
(0*29,10).6148(95.6).2100(95.6).4374(95.6).5741(95.4).2094(95.6).4344(95.7).2033(95.6).4214(95.8)
(5,0*28,5).6425(95.7).2228(95.8).4651(95.8).6132(95.5).2226(96.0).4611(96.0).2134(95.8).4486(96.2)

26(14,0*25).8051(95.9).2655(95.9).5564(95.9).7198(94.1).2654(96.0).5458(95.9).2508(96.0).5254(94.2)
(0,12,14,0*13).6639(95.5).2380(95.7).4992(95.6).6238(94.7).2372(95.7).4867(95.8).2241(95.7).4674(94.9)
(0*25,14).6537(95.5).2212(95.5).4619(95.6).5788(93.9).2212(95.4).4547(95.6).2136(95.6).4359(94.7)
(7,0*24,7).6762(95.8).2300(95.7).4817(96.0).6354(95.4).2297(95.7).4749(95.9).2213(95.9).4619(94.7)

20(20,0*19).8905(95.9).2970(95.9).6311(96.1).8292(94.8).2962(96.0).6117(96.0).2765(96.0).5988(95.3)
(0*9,20,0*10).7149(95.8).2644(95.8).5602(95.8).6835(94.2).2627(95.8).5404(95.8).2453(95.8).5224(94.9)
(0*19,20).6463(95.4).2355(95.5).4963(95.6).5868(94.9).2349(95.6).4814(95.5).2223(95.5).4662(95.3)
(10,0*18,10).7234(95.3).2475(95.2).5232(95.3).6684(95.1).2469(95.2).5139(95.3).2350(95.3).4950(95.5)

Table 5

Remission times for patients receiving a particular leukemia therapy

nmTRθ̂θ̂SLθ̂LL(h = −.5)θ̂LL(h = .5)θ̂MSθ̂ML(h = −.5)θ̂ML(h = .5)
302430(6, 0*23)7.08456.83827.36736.22616.42338.74766.2968
1430(3, 0*10, 3, 0*2)8.09667.73798.54097.01167.248510.45387.1166

nmTRR̂eR̂eSLR̂eLL(h = −.5)R̂eLL(h = .5)R̂eMSR̂eML(h = −.5)R̂eML(h = .5)

302430(6, 0*23).3752.3561.3963.3064.3228.4887.3123
1430(3, 0*10, 3, 0*2).4474.4229.4760.3696.3875.5798.3776

nmTRĤĤSLĤLL(h = −.5)ĤLL(h = .5)ĤMSĤML(h = −.5)ĤML(h = .5)

302430(6, 0*23).0959.1004.1135.0910.1090.1119.0722
1430(3, 0*10, 3, 0*2).0802.0853.0972.0746.0930.0953.0564

References
  1. Alemdjrodo K and Zhao Y (2020). New empirical likelihood inference for the mean residual life with length-biased and right-censored data. Journal of Nonparametric Statistics, 32, 1029-1046.
    CrossRef
  2. Alotaibi N, Hashem AF, Elbatal I, Alyami SA, Al-Moisheer AS, and Elgarhy M (2022). Inference for a Kavya-Manoharan inverse length biased exponential distribution under progressive-stress model based on progressive type-II censoring. Entropy, 24, 1033.
    Pubmed KoreaMed CrossRef
  3. Chen LP and Qiu B (2023). Analysis of length-biased and partly interval-censored survival data with mismeasured covariates. Biometrics, 79, 3929-3940.
    Pubmed CrossRef
  4. Fattah AA and Ahmed AN (2018). A unified approach for generalizing some families of probability distributions, with applications to reliability theory. Pakistan Journal of Statistics and Operation Research, 14, 253-273.
    CrossRef
  5. Gupta RC and Akman O (1998). Statistical inference based on the length-biased data for the inversegaussian distribution. Statistics, 31, 325-337.
    CrossRef
  6. Lawless JF (1982). Statistical Models and Methods for Lifetime Data, JohnWiley & Sons, New York.
  7. Lee K (2024). Bayes and maximum likelihood estimation of uncertainty measure of the inverse Weibull distribution under generalized adaptive progressive hybrid censoring. Mathematics, 10, 4782.
    CrossRef
  8. Li M, Ning W, and Tian Y (2024). Change point test for length-biased lognormal distribution under random right censoring. Mathematics, 12, 1760.
    CrossRef
  9. Shen PS, Peng Y, Chen HJ, and Chen CM (2022). Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction. Lifetime Data Analysis, 28, 68-88.
    CrossRef