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Abstract
The goal of sufficient dimension reduction (SDR) is to replace original p-dimensional predictors with a

lower-dimensional linearly transformed predictor. The sliced inverse regression (SIR) (Li, Journal of the Amer-
ican Statistical Association, 86, 316–342, 1991) is one of the most popular SDR methods because of its appli-
cability and simple implementation in practice. However, SIR may yield different dimension reduction results
for different numbers of slices and despite its popularity, is a clear deficit for SIR. To overcome this, a fused
sliced inverse regression was recently proposed. The study shows that the dimension-reduced predictors is robust
to the numbers of the slices, but it does not investigate how robust its dimension determination is. This paper
suggests a permutation dimension determination for the fused sliced inverse regression that is compared with SIR
to investigate the robustness to the numbers of slices in the dimension determination. Numerical studies confirm
this and a real data example is presented.

Keywords: central subspace, fused sliced inverse regression, permutation test, sufficient dimen-
sion reduction

1. Introduction

Consider a regression of Y ∈ R1|X ∈ Rp = (X1, . . . , Xp)T. Then, sufficient dimension reduction
(SDR) in regression replaces the original p-dimensional predictors X with a lower-dimensional lin-
early transformed predictor MTX without loss of information about Y |X such that

Y X|MTX, (1.1)

where M ∈ Rp×q, stands for independence, and q ≤ p.
Statement (1.1) implies that the two regressions of Y |X and Y |MTX are equivalent; therefore, X

can be replaced by MTX without loss of information about Y |X. A column subspace of M satisfying
(1.1) is defined as a dimension reduction subspace. If the intersection of all possible dimension
reduction subspaces is a dimension reduction subspace, it is minimal and unique among all possible
dimension reduction subspaces. The intersection is defined as the central subspace SY |X. Therefore,
the estimation of SY |X is the main goal of SDR. The rest of the paper denotes the true dimension and
orthonormal basis matrix of SY |X as d and η ∈ Rp×d , respectively. The lower-dimensional linearly
transformed predictor ηTX is called sufficient predictors.

The sliced inverse regression (SIR) (Li, 1991) is one of the most popular SDR methods due to
large applicability and simple implementation in practice. The key step of the SIR application is a
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categorization of a response variable Y . This categorization is called slicing. The performance of SIR
does not theoretically depend on the numbers of slices; however, its sample behaviors to estimate SY |X
are sensitive to the numbers of slices. Even critically, there is no optimal or recommended one, which
can be adopted as a golden standard. To relieve this issue, Cook and Zhang (2014) recently suggest
an approach to fuse sample kernel matrices of SIR constructed from various choices of slices. This
fusing approach is known as fused sliced inverse regression (FSIR). According to Cook and Zhang
(2014), the FSIR results in robust basis estimation of SY |X to the numbers of slices.

The inference of SY |X requires two steps. First, the structural dimension d of SY |X should be
determined, and the basis η is estimated given that d = d̂. However, Cook and Zhang (2014) do not
provide the clear dimension determination and its asymptotic behaviors.

This paper investigates robustness in the dimension estimation of SY |X in FSIR by employing a
permutation approach. If FSIR is sensitive to determine the structural dimension, then this accordingly
affects the robustness in the basis estimation. This study can completely prove the potential advantages
of FSIR over SIR in robust and possibly better estimation of SY |X.

The organization of the paper is as follows. In Section 2, we briefly discuss a FSIR and suggest a
permutation dimension determination. Section 3 is devoted to numerical studies and the presentation
of a real data application. Our work is summarized in Section 4. We will define the following nota-
tions, which will be used frequently throughout the rest of the paper. A subspace S(B) stands for a
subspace spanned by the columns of B ∈ Rp×q; in addition, we define that Σ = cov(X).

2. Permutation dimension determination in fused sliced inverse regression

2.1. Sliced inverse regression

The method of SIR (Li, 1991) will be explained through the normalized predictor Z = Σ−1/2(X−E(X))
of X. For notational convenience, define SY |Z and ηz as the central subspace for a regression of Y |Z
and its p × d orthonormal basis matrix , respectively. Proposition 6.3 in Cook (1998) guarantees that
the structural dimensions of SY |X and SY |Z are equal and that SY |X = Σ

−1/2SY |Z. Assume that the
following linearity condition holds: (C1) E(Z|ηT

z Z) is linear in ηT
z Z. Li (1991) shows the following

relation under the linearity condition:

S(E(Z|Y)) ⊆ SY |Z ⇔ S
(
Σ−1E(X|Y)

)
⊆ SY |X.

To guarantee the exhaustive estimation of SY |Z, it is usually assumed that S(E(Z|Y)) = SY |Z. An
estimation of SY |X through E(X|Y) is called SIR.

Since any specific models of Y |Z are not assumed in SIR, E(Z|Y) should be restored nonparam-
etically. If Y is categorical with h levels, the construction of E(Z|Y) is straightforward, which is a
set of the means of Z within each level of Y . If Y is continuous or many-valued, the computation of
E(Z|Y) is unclear. For its simple but effective estimation in the case, Y is categorized with h levels.
The categorized response will be denoted as Ỹ , and the computation of E(Z|Ỹ = s) is straightforward.
Assuming that S(E(Z|Y)) = S(E(Z|Ỹ = s)), E(Z|Y) is easily and nonparametrically recovered, as-
suming that S(E(Z|Y)) = S(E(Z|Ỹ = s)). This categorization of Y is often called slicing, which is
the essential part in the SIR application in practice. Next, SIR constructs the kernel matrix of either
MSIR = cov(E(Z|Y)) or MSIR = cov(E(Z|Ỹ)), depending on the type of Y . Then the columns of MSIR
spans SY |Z.

The sample SIR algorithm is as:

1. Construct Ỹ by partitioning the range of Y into h non-overlapping intervals to have equal numbers
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of the observations as much as possible, if Y is continuous or many-valued. If Y is categorical, the
original Y becomes Ỹ . Denote ns as the number of observations for Ỹ = s for s = 1, . . . , h.

2. Construct Ẑi = Σ̂
−1

(Xi − X̄), and then compute Ê(Z|Ỹ = s) = (1/ns)
∑

Ỹ=s Ẑi for s = 1, . . . , h.

3. Compute the sample version M̂SIR of MSIR as:

M̂SIR = ĉov
(
E

(
Z|Ỹ

))
=

h∑
s=1

ns

n
Ê

(
Z|Ỹ = s

)
Ê

(
Z|Ỹ = s

)T
.

4. Spectral-decompose M̂SIR such that M̂SIR =
∑p

i=1 α̂ jϕ̂ jϕ̂
T
j , where α̂1 ≥ · · · ≥ α̂p ≥ 0 are the

ordered-eigenvalues of M̂SIR and ϕ̂i, i = 1, . . . , p, is the corresponding eigenvector to α̂i.

5. The structural dimension d is determined through a sequential test, and set d = d̂.

6. The eigenvectors ϕ̂i corresponding to the first d̂ largest α̂is become the estimate of ηz:

η̂z =
(
ϕ̂1, . . . , ϕ̂d̂

)
to have the sample basis estimate for η so that η̂ = Σ̂

−1/2
η̂z.

In the sample implementation of SIR, the construction of M̂SIR clearly depends on the numbers
of h. In practice, different numbers of h yield different asymptotic results in basis and dimension
estimation of SY |Z, and hence this should be worrisome in the data application. Moreover, there is no
golden standard on how many slices should be used.

2.2. Fused sliced inverse regression

To overcome the deficit of the sensitiveness of SIR to the numbers of slices, a fused approach is
developed by Cook and Zhang (2014) to combine the MSIR constructed from various numbers of
slices. Now define

E(h)
F =

(
E

(
Z|Ỹ(h1)

)
, E

(
Z|Ỹ(h2)

)
, . . . , E

(
Z|Ỹ(hK )

))
and M(h)

FSIR = E(h)
F E(h)T

F ,

where Y(hK ) indicates the categorized response into hK slices.
Since M(h)

FSIR is a non-decreasing sequence over h, the following relation holds that

S
(
M(k)

SIR

)
⊆ S

(
M(h)

FSIR

)
, k = 2, 3, . . . , h.

Furthermore, the assumed equivalence of S(M(k)
SIR) = SY |Z guarantees that

S
(
M(h)

FSIR

)
= SY |Z and S

(
Σ−

1
2 M(h)

FSIR

)
= SY |X.

This directly implies that the columns of M(h)
FSIR spans SY |Z. The inference on SY |X through M(h)

FSIR is
called FSIR.

The sample version M̂(h)
FSIR is computed by constructing M̂(k)

SIR via usual SIR application:

M̂(h)
FSIR =

(
M̂(2)

SIR, M̂
(3)
SIR, . . . , M̂

(h)
SIR

)
.
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The inference procedure of SY |Z via M̂(h)
FSIR is the same as that through SIR. Let M̂(h)

FSIR =
∑p

i=1 λ̂iγ̂iγ̂
T
i ,

be the spectral decomposition of M̂(h)
FSIR, where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the ordered-eigenvalues of

M̂(h)
FSIR and γ̂i is its corresponding eigenvector for i = 1, . . . , p.

Cook and Zhang (2014) provide that FSIR is robust in the basis estimation of SY |Z to the number
of slices compared with SIR, and they estimate ηz with the true structural dimension given. However,
its result clearly affects the basis estimation since the dimension should be determined before the basis
estimation. That is, if the dimension determination is not robust to the numbers of slices, then it affects
the selection of the eigenvectors λ̂i. Accordingly, this falsely impacts the robustness in the estimation
of SY |Z.

For this, in the next section, a permutation approach is suggested to estimate the structural dimen-
sion d of SY |Z through FSIR.

2.3. Permutation dimension determination

It is necessary to first define related hypothesis before estimating the true structural dimension. For
this, the following sequence of hypothesis (Rao, 1965) is tested. Starting with m = 0, test H0 : d = m
versus H1 : d = m+1. If H0 : d = m is rejected, increment m by 1 and repeat the test, stopping the first
time H0 is not rejected and setting d̂ = m. To conduct this sequential test, a test statistic is necessary.
To construct the test statistics, it should be observed that the dimension of SY |Z is equal to the true
rank of M(h)

FSIR, because S(M(h)
FSIR) = SY |Z. Then the inference on d is equal to the rank estimation of

M(h)
FSIR. This is equivalent to test how many non-zero eigenvalues exist for its spectral decomposition.

Based on this discussion, the related test statistics for the dimension determination is suggested as

Λ̂m = n
p∑

i=m+1

λ̂i,

where n is a sample size.
To avoid the difficulty in deriving the asymptotics of Λ̂m under H0, a permutation dimension

determination approach is adopted here. The permutation approach has had a long history in SDR
literature, but it is still popularly used (Cook and Weisberg, 1991; Cook and Yin, 2002; Yin and Cook,
2002; Lee et al., 2013; Dong et al., 2016). One possible drawback is that it needs an additional
condition of (

Y,ΓT
1 Z

)
ΓT

2 Z,

where Γ1 = (γ1, . . . , γm) is a set of eigenvectors corresponding to the m largest eigenvalues of M(h)
FSIR

under H0 : d = m, and Γ2 ∈ Rp×(p−m) is the orthogonal complement of Γ1. If Z is normally distributed,
the condition is satisfied under H0. Since the predictors are often transformed to normality to satisfy
linearity, the additional condition would not be strong in practice.

The permutation dimension determination algorithm is:

1. Construct M̂(h)
FSIR. Under H0 : d = m, obtain Λ̂m and divide eigenvector matrices into the following

two groups:

Γ̂1 = (γ̂1, . . . , γ̂m) and Γ̂2 =
(
γ̂m+1, . . . , γ̂p

)
.

2. Compute two sets predictors of V̂i ∈ Rm×1 = Γ̂
T
1 Ẑi and Ûi ∈ R(p−m)×1 = Γ̂

T
2 Ẑi, for i = 1, . . . , n.
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3. Randomly permute the index i of the Ûi alone and construct the permuted set Û∗i .

4. Compute the test statistic Λ̂∗m via the FSIR application on a regression of Yi|(V̂i , Û∗i ).

5. Repeat steps (3)–(4) N times, where N is the total number of permutations. The p-value of the
hypothesis testing is the fraction of Λ̂∗m that exceed Λ̂m.

In this permutation determination procedure, it had better be noted that the p-values may not have an
increasing tendency as m increases. The number of permutation N = 1000 will be used in numerical
studies and real data analysis.

3. Numerical studies and real data application

3.1. Numerical studies

We considered the following two regression models:

• Model 1: Y |X = (X1, . . . , X10)T = X1 + ε.

• Model 2: Y |X = (X1, . . . , X10)T = X1 + exp(X2)ε.

For both models, the predictors of X = (X1, . . . , X10)T and the random error ε were independently
sampled either from N(0, 1) or from t10.

For Model 1, the structural dimension of SY |X is equal to one, and SY |X is spanned by η =
(1, 0, . . . , 0)T. The structure of the regression is quite simple. All information on the regression for
predictors is completely given in the first conditional moment only through X1. However, in Model
2, the two columns of η = ((1, 0, . . . , 0), (0, 1, 0, . . . , 0))T spans SY |X, and its true dimension is equal
to two. The regression depends on its first two conditional moments. One sufficient predictor X1
explains the conditional mean, while the other sufficient predictor X2 contributes to the conditional
variance. Therefore, Model 2 has a more complex regression than Model 1.

Tho sample sizes of n = 100 and 200 were considered, and each model was iterated 500 times with
h = 4, 5, 7, 9. The 5% nominal level was used for all simulation. For SIR, if predictors are normally-
distributed, the dimension was determined through a χ2 test; if not, a weighted sum of independent
χ2s was used.

As a summary of the numerical studies, the percentages of the correct dimension determination
for each model were initially computed. Furthermore, to investigate the robustness in the dimension
estimation, for each iteration of the model, the concordant decisions with its true dimension were
investigated with two or more slice choices. Let d̂h be the estimate of the dimension by SIR or FSIR
with h slices. Then, for each model, the following percentages were additionally computed.

2 pairs d̂4 = d̂5 = d d̂4 = d̂7 = d d̂4 = d̂9 = d
d̂5 = d̂7 = d d̂5 = d̂9 = d d̂7 = d̂9 = d

3 pairs d̂4 = d̂5 = d̂7 = d d̂4 = d̂5 = d̂9 = d d̂4 = d̂7 = d̂9 = d d̂5 = d̂7 = d̂9 = d
All d̂4 = d̂5 = d̂7 = d̂9 = d

For Model 1 and 2, the dimension d is one and two, respectively. If SIR and FSIR are robust to the
numbers of slices in the dimension estimation, the correct decision percentages for each number of
slices and the 2–4 pairs of the equal decision percentages must be close to 95%. These are reported in
Figure 1. For each figure, the horizontal axis represents various choices of slices. For example, “479”
stands for the percentages of d̂4 = d̂7 = d̂9 = d and “all” does for those of d̂4 = d̂5 = d̂7 = d̂9 = d.
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(a) Model 1 with N(0, 1)
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(b) Model 1 with t10
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(c) Model 2 with N(0, 1)
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Figure 1: Summary for numerical studies; Solid line, FSIR; Dashed line, SIR. SIR = sliced inverse regression;
FSIR = fused SIR.

Figure 1 shows characteristic behaviors in the dimension estimation. In most numerical studies,
FSIR shows better dimension determination results than SIR. With smaller sample size, FSIR is more
robust to the numbers of slices than SIR. With complex regression models, FSIR is impacted by
the numbers of slices, which is less affected than SIR. FSIR shows more consistent behaviors in
the dimension estimation to the distribution of the variables than SIR. As discussed in Cook and
Zhang (2014), FSIR yields more robust and better estimation result to the number of slices than SIR.
This directly impacts the dimension estimation, so FSIR yields more robust results than SIR. This
numerical studies confirm that FSIR should have a potential advantage over SIR in both dimension
and basis estimation of SY |X.

3.2. Real data example: primary biliary cirrhosis data

For illustration purposes, primary biliary cirrhosis (PBC) data in Tibshirani (1997) and Yoo (2017)
is analyzed. This data was collected at the Mayo Clinic between 1974 and 1986 and contains the
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following 19 variables with 276 observations:

Y = the number of days between registration and the earlier of death or censoring

δ = 1, if Y is time to death; 0 otherwise

X1 Treatment code: 1 = D-penicillamine, 2 = placebo

X2 Age in years

X3 Gender: 0 = male, 1 = female

X4 Presence of ascites: absent = 0 or present = 1

X5 Presence of hepatomegaly: absent = 0 or present = 1

X6 Presence of spiders: 0 = no or 1 = yes

X7 Presence of edema: absent and no diuretic therapy = 0, present but no diuretic therapy or edema
resolved by diuretics = 0.5, or present despite diuretic therapy = 1

X8 Serum bilirubin, in mg/dl

X9 Serum cholesterol, in mg/dl

X10 Albumin, in g/dl

X11 Urine copper, in µg/day

X12 Alkaline phosphatase, in U/liter

X13 SGOT, in U/ml

X14 Triglycerides, in mg/dl

X15 Platelet count; coded value is number of platelets per cubic ml of blood divided by 1,000

X16 Prothrombin time, in seconds

X17 Histologic state of disease, graded 1, 2, 3, or 4

We also considered PBC data because it often used in survival regression. According to Cook
(2003), the SIR application in survival regression requires bivariate slicing of the observed survival
time and the censoring status. In this analysis, the observed survival time was sliced first into 2, 3,
4, and 5 categories, and then the observations with each category were secondly partitioned by two
groups depending on the censoring status. Therefore, the numbers of slices under consideration were
4, 6, 8, and 10 for SIR. The same slicing scheme was applied for FSIR; in addition, we considered
three fusing cases of (4, 6), (4, 6, 8), and (4, 6, 8, 10). Table 1 reports the p-values for H0 : d = m for
m = 0, 1, 2, 3.

According to Table 1, with level 5%, the SIR application to PBC data determines that d̂ = 2 with 4
and 10 slices and d̂ = 3 with 6 and 8 slices. Therefore, with SIR, the dimension determination would
be confusing. However, FSIR determines that d̂ = 3 for all three cases and supports the different
estimation results in SIR that originated from the different numbers of slices.

According to Yoo (2017), for the same data, FSIR shows more robust basis estimation than SIR
for each case of d = 1, d = 2, and d = 3. Therefore, the robustness in the dimension estimation
coincides with the basis estimation.



520 Jae Keun Yoo, YooNa Cho

Table 1: P-values for H0 : d = m by SIR and FSIR; SIR#, SIR with # slices; FSIR#, FSIR upto # slices

SIR4 SIR6 SIR8 SIR10 FSIR6 FSIR8 FSIR10
H0 : d = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H0 : d = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H0 : d = 2 0.454 0.020 0.009 0.062 0.032 0.008 0.010
H0 : d = 3 N/A 0.725 0.286 0.955 0.610 0.331 0.631

SIR = sliced inverse regression; FSIR = fused SIR.

4. Conclusion

This paper investigates robustness in the dimension determination by FSIR (Cook and Zhang, 2014)
over SIR (Li, 1991). A permutation approach is employed to avoid difficulty in deriving related test
statistics.

Numerical studies show that FSIR has more robust dimension estimation to the numbers of slices
than SIR, and confirms that FSIR has a potential advantage in an inference on the central subspace
over SIR.

Usage of the asymptotic distribution of the test statistics in FSIR enables avoiding the additional
requirement of the permutation test. It also reduces the computing time for the related p-values and
leaves a room for improving robustness in the dimension determination.
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