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Abstract
We consider the problem of model selection in multiple linear regression with outliers and non-normal er-

ror distributions. In this article, the robust model selection criterion is proposed based on the robust estimation
method with the least absolute deviation (LAD). The proposed criterion is shown to be consistent. We sug-
gest proposed criterion based algorithms that are suitable for a large number of predictors in the model. These
algorithms select only relevant predictor variables with probability one for large sample sizes. An exhaustive
simulation study shows that the criterion performs well. However, the proposed criterion is applied to a real data
set to examine its applicability. The simulation results show the proficiency of algorithms in the presence of
outliers, non-normal distribution, and multicollinearity.
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1. Introduction

The primary goal of regression analysis is to evolve a useful model to accurately predict the response
variable for the given values of predictors. Consider the following general multiple linear regression
model

y = Xβ + ε, (1.1)

where y is n×1 vector of observed values of the response variable, X is n×k full rank matrix of (k−1)
predictor variables with ones in the first column, and β is corresponding k × 1 vector of an unknown
regression coefficients. The ε is n × 1 vector of independent errors, and has the same distribution
function F.

While developing the model, it is necessary to find out the unknown regression coefficients by
using the appropriate method. The eminent ordinary least squares (OLS) estimator is obtained by
minimizing the residual sum of squares. The OLS estimator is easy to compute and satisfies many
properties. Nevertheless, the OLS method is not resistant to inconvenient observations in y space
(known as outliers) and departs from the normality assumption of error in real data. The least ab-
solute deviation (LAD) furnishes a useful and plausible alternative, resistant estimator. The LAD
has many applications in Econometric and other studies. The resistant LAD estimator is obtained by
minimizing the sum of absolute residuals. Dielman (2005) presented a rich literature review on LAD
regression. LAD estimator has asymptotic N(β, τ2(X

′
X)−1) distribution, τ = 1/{2 f (m)}, and f (m) is

the probability density of error evaluated at the median. The τ2/n is a variance of the sample median
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of error. It is assumed that F(0) = 1/2 and f (0) > 0. The LAD estimator is useful for the existence of
outliers and the non-normal error distribution problem.

Problems such as increase in complexity, prediction error, and economical aspects arise due to the
addition of irrelevant predictor variables in the regression model. Such problems can be handled by
a decisive aspect known as the model selection or variable selection procedure. Model selection has
recently attracted significant attention in statistical research. The selection of a less complex model is
essential. The model selection criteria are represented in the following form

Lack of Fit +Model Complexity.

Hence, the model selection can be done by trading off the lack of fit against model complexity. Many
model selection methods have been proposed in the literature to choose a parsimonious model in mul-
tiple linear regression. Rao et al. (2001) given an extensive literature review on model selection.
Most methods are based on OLS such as Mallows’s Cp (Mallows, 1973). For zero bias, the expected
value of Cp is p; therefore, Mallows’s Cp selects the model for which Cp close to p. The Cp plot is a
useful tool to graphically represent Mallows’s Cp. There are alternative graphical methods available
to select predictor variables. Siniksaran (2008) recently suggested an alternative plot with some ad-
vantages using a geometric approach. Gilmour (1995) modified Mallows’s Cp because the expected
value of Mallows’s Cp of a model which includes all relevant predictor variables is not equal to p
when the mean squared error (MSE) is used as an estimate of σ2. Other methods like Akaike infor-
mation criterion (AIC) (Akaike, 1973) and Bayesian information criterion (BIC) (Schwarz, 1978), are
also available in the literature. Yamashita et al. (2007) studied stepwise AIC as well as other stepwise
methods such as partial F, partial correlation and semi-partial correlation for variable selection in
multiple linear regression that showed certain advantages of stepwise AIC.

The above methods are based on OLS or likelihood and are vulnerable to outliers. Researchers
have proposed various robust variable selection methods to deal with outliers such as robust AIC
(RAIC) (Ronchetti, 1985), robust BIC (RBIC) (Machado, 1993), RCp (Ronchetti and Staudte, 1994),
Cp(d) (Kim and Hwang, 2000), S p (Kashid and Kulkarni, 2002), and Tharmaratnam and Claeskens
(2013) compared AIC based on different robust estimators. The model selection criteria Cp,RCp,Cp(d)
and AIC are inconsistent; therefore, the probability of selection of only relevant predictor variables
is less than one for large sample size. Methods like BIC and GIC-LR are consistent model selec-
tion methods that select only relevant predictor variables with probability one for a large sample size
(Rao et al., 2001). The BIC and GIC-LR methods are based on likelihood function and ordinary
least squares (OLS) estimator respectively; however, these perform poorly in existence of outliers
or departures from the normality assumption. BIC or GIC-LR methods existing in the literature are
therefore consistent but not robust. To overcome this drawback, we have proposed a consistent and
robust model selection criterion based on LAD estimator.

The remaining article is organized as follows. In Section 2, we propose a new variable selection
criterion. We also studied its theoretical properties. In Section 3, the performance of the proposed
criterion is studied through simulation and real data. The algorithms for model selection are explained
in Section 4 with simulation and body fat real dataset. The article ends with some discussions of the
results in Section 5.

2. Proposed method

The model (1.1) can be rewritten as

y = X1β1 + X2β2 + ε, (2.1)
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where X and β are partitioned so that X1 is a matrix of (p − 1) predictor variables with ones in the
first column, and β1 is a p × 1 vector of associated regression coefficients including intercept. X2 is a
matrix of (k− p) predictor variables, and β2 is a (k− p)×1 vector of associated regression coefficients.
Consider the test for regression coefficient with the null hypothesis H0 : β2 = 0. Under the null
hypothesis, the reduced model is

y = X1β1 + ε. (2.2)

Consider ŷ f and ŷr are the predicted values of y based on full model and reduced model respectively.
The predicted values are obtained using the LAD estimator of the respective models. We propose a
criterion based on these fitted values of y and model complexity. It is defined as

CRp =
|y − ŷr |

′1 − |y − ŷ f |
′1

τ
2

(
1 + k−p

n−k+p

) +Cn(p). (2.3)

The first term Dp = [|y − ŷr |
′1 − |y − ŷ f |

′1]/[(τ/2){1 + (k − p)/(n − k + p)}] represents the lack of fit
and is non-negative, 1 is the n-dimensional column vector of ones, and τ is a scale parameter that
can be replaced by a suitable estimator based on a full model. The Dp is a scaled likelihood test
statistic and scaled by the quantity (1 + (k − p)/(n − k + p)). This statistic is accurate for moderate
sample size as compared to likelihood test statistic (Birkes and Dodge, 1993). For n → ∞,Dp and
likelihood test statistic are equivalent. Dp = 0 for the full model and is minimum among all possible
subsets; therefore, if we select a model that has a minimum Dp, then the full model is always selected.
Hence, the ‘minimum Dp’ criterion does not select the parsimonious model which explain data with
few predictor variables and has better prediction ability. To make a consistent criterion, consider
the model complexity Cn(p) is an increasing function of model dimension (p) that often depends
on sample size (n). Generally, the model dimension considered as the model complexity, but this
complexity measure does not make a consistent criterion. To overcome this problem, we consider
the function of the sample size and model dimension as a complexity measure. The model having
small complexity will be the best model as long as discrepancy measure (Dp) is also small. The CRp

criterion selects the model which has a small CRp value among all possible models. The established
theoretical results of the CRp are given below:

Proposition 1. Under the null hypothesis H0, E(CRp) = (k − p) +Cn(p).

Proof: The proposed criterion is

CRp =
|y − ŷr |

′1 − |y − ŷ f |
′1

τ
2

(
1 + k−p

n−k+p

) +Cn(p).

Under the null hypothesis, Dp approximately follows χ2 distribution with k − p degree of freedom
(Birkes and Dodge, 1993). The expected value of CRp is

E(CRp) = (k − p) +Cn(p).

Hence, the proof. �

Alternatively, for large n the proposed criterion can be written as

CRaltp =
τ

2

(
|y − ŷr |

′
1 − |y − ŷ f |

′
1
)
+Cn(p). (2.4)
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The performance of both criteria expressed in (2.3) and (2.4) will be same for large n. Consider, α1

be the subset of {1, 2, . . . , k − 1}, and α0 represents intercept. Let the selected model denoted by Mα,
α = α1 ∪ α0, and α0 represents a set of all necessary predictor variables. The selected model belongs
to one of the following classes:

• Optimal Model:Mo = Mo = {Mα : α = α0}

• Class of correct models:Mc = {Mα : α ⊇ α0}

• Class of wrong models:Mw = {Mα : α + α0}

Let CRpα∗ and CRpα∗∗ denotes the values of criterion corresponding to any correct model Mα∗ ∈ Mc

and wrong model Mα∗∗ ∈ Mw with dimension pα∗ and pα∗∗ respectively. The ŷc and ŷw are vectors of
fitted values of the respective correct model and wrong model. Under mild conditions, the Theorem 1
exhibits the consistency property of the proposed criterion for fixed k.

Condition 1. For any Mα∗ ∈ Mc and Mα∗∗ ∈ Mw, lim inf
n→∞

( |y−ŷw |
′1

n − |y−ŷc |
′1

n

)
> 0.

It is expected that the average of absolute residuals of the wrong model is greater than any correct
model. Thus, the difference (|y − ŷw|

′1/n−|y − ŷc|
′1/n) is positive, large, and Condition 1 is reasonably

true.

Condition 2. Cn(p) = o(n) and Cn(p)→ ∞ as n→ ∞.

The Condition 2 is required to prove the following consistency property.

Theorem 1. (Consistency Property) Assume that above conditions are satisfied. Then

lim
n→∞

Pr(Mα = Mo) = 1.

Proof: From the definition of criterion,

CRpα∗∗ −CRpα∗ =
|y − ŷw|

′1 − |y − ŷ f |
′1

τ
2

(
1 + k−pα∗∗

n−k+pα∗∗

) −
|y − ŷc|

′1 − |y − ŷ f |
′1

τ
2

(
1 + k−pα∗

n−k+pα∗

) +Cn(pα∗∗ ) −Cn(pα∗)

=
2
τ

((
1 − k − pα∗∗

n

)
|y − ŷw|

′
1 − |y − ŷc|

′
1
)
+

2(k − pα∗ )
τn

|y − ŷc|
′
1

+
2(pα∗ − pα∗∗ )

τn
|y − ŷ f |

′
1 +Cn(pα∗∗) −Cn(pα∗)

=
2
τ

((
1 − k − pα∗∗

n

)
|y − ŷw|

′
1 − |y − ŷc|

′
1
)
+ ξ1 + ξ2 +Cn(pα∗∗ ) −Cn(pα∗), (2.5)

where

ξ1 =
2(k − pα∗ )

τn
|y − ŷc|

′
1 and ξ2 =

2(pα∗ − pα∗∗ )
τn

|y − ŷ f |
′
1.

For any selected model Mα,

|y − ŷr |′1 − |y − ŷ f |′1 ≤ |Xβ̂ − Xβ|′1 + |Xαβ̂α − Xαβα|′1 + |Xβ − Xαβα|′1. (2.6)
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Whenever, Mα ∈ Mc, Xβ = Xαβα and by consistency and asymptotic normality property (Dielman,
2005) we have |Xαβ̂α − Xαβα|′1 = Op(1), |y − ŷc|′1 = Op(1), |y − ŷ f |′1 = Op(1) and consequently,
ξ1 = ξ2 = op(1). Hence,

lim inf
n→∞

Pr
(
CRpα∗∗ −CRpα∗ > 0

)
= lim inf

n→∞
Pr

(
2
τ

((
1 − k − pα∗∗

n

)
|y − ŷw|

′
1 − |y − ŷc|

′
1
)
+ op(1) +Cn(pα∗∗ ) −Cn(pα∗) > 0

)
≥ Pr

(
lim inf

n→∞

2
τ

((
1 − k − pα∗∗

n

)
|y − ŷw|

′
1 − |y − ŷc|

′
1
)
+ op(1) + op(n) > 0

)
= 1. (2.7)

Now, to complete the proof, it is sufficient to show that CRp selects the optimal model with probability
one among the class of correct models. Consider Dpαo

and Dpα∗ are values of Dp corresponding to the
optimal and correct model respectively. Under Condition 2, we have

lim
n→∞

Pr(Mα = Mo) = lim
n→∞

Pr
(
CRpαo

≤ CRpα∗

)
= lim

n→∞
Pr

(
Dpαo

− Dpα∗ < ∞
)

= lim
n→∞

Pr
(
χ2

pα∗−pαo
< ∞

)
= 1. (2.8)

Hence, the CRp selects only all relevant predictor variables with probability one for large n. �

2.1. Choice of τ

The CRp requires the estimation of an unknown scale parameter τ. Birkes and Dodge (1993) have the
given estimator τ̂1 of τ, and recommended to use only non-zero residuals to improve the performance.
Dielman (2006) examined the performance of the likelihood ratio (LR) test, the Wald test and the
Lagrange multiplier (LM) test for the testing hypothesis regarding the regression coefficient in the
LAD regression. He considered four different estimators τ̂2, τ̂3, τ̂4, and τ̂5 of τ for a comparative
study of these significance tests as well as showed that these types of estimators are performed well.
In this study, we considered the following five existing estimators of τ to calculate CRp.

τ̂1 =

√
m

(
r(k2) − r(k1)

)
4

, k1 =

[
m + 1

2
−
√

m
]
, k2 =

[
m + 1

2
+
√

m
]
, and m =

n∑
i=1

I(ri,0),

τ̂2 =

√
m

(
r(m−k1−1) − r(k1)

)
z α

2

, k1 =

[
m + 1

2
− z α

2

√
m
4

]
, m =

n∑
i=1

I(ri,0), and α = 0.05,

τ̂3 =

√
m

(
r(m−k1−1) − r(k1)

)
z α

2

, k1 =

[
m + 1

2
− z α

2

√
m
4

]
, m = n, and α = 0.05,

τ̂4 =

√
m

(
r(m−k1−1) − r(k1)

)
t α

2

, k1 =

[
m + 1

2
− t α

2

√
m
4

]
, m =

n∑
i=1

I(ri,0), and α = 0.05,

τ̂5 =

√
m

(
r(m−k1−1) − r(k1)

)
t α

2

, k1 =

[
m + 1

2
− t α

2

√
m
4

]
, m = n, and α = 0.05.
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Table 1: Penalty functions

Sr. No. Penalty function Cn(p)
1 P1 = 2p
2 P2 = 3p
3 P3 = 2p log(p)
4 P4 = p log(n)
5 P5 = p

(
log(n) + 1

)
6 P6 = p

√
n

7 P7 = p
(√

n + 2
)

Here, r(·) denotes ordered residuals of full model, and [ · ] denotes nearest positive integer. Only
nonzero residuals are considered to estimate τ̂1, τ̂2, and τ̂4; however, all n residuals are considered
to estimate τ̂3 and τ̂5. An exhaustive simulation compares the performance of these estimators in the
next section.

3. Performance of CRpCRpCRp

In this section, an extensive simulation study checked the superiority of the proposed criterion. Also,
the real-life data analysis showed an applicability of the criterion.

3.1. Simulation study

In this simulation study, we considered seven different penalties (Table 1). The four penalties P4–P7
satisfy Condition 2, and remaining penalties are the functions of p only and do not satisfy Condition
2.

The independent predictor variables X j, j = 1, 2, . . . , (k−1) and random errors are generated from
N(0, 1) distribution. The outliers are introduced artificially in the data by multiplying 20 to response
variable y corresponding to maximum absolute residuals. The simulation has been done for different
sample sizes n = 30, 50, 70, 100, 200 and two different models are described below:

• Model-I: β = (5, 2, 3, 4, 0, 0)

• Model-II: β = (5, 2, 3, 4, 2, 0, 0)

In both these models, the response variable y is generated using (1.1). The performance of the
proposed method is studied in terms of the percentage of an optimal model selection. The percentage
of an optimal model selection in 1,000 runs are recorded in Table 2 and Table 3. It shows that CRp

performs well in cases of clean data as well as outliers; however, outliers drastically affect AIC and
BIC. RBIC performs uniformly better than RAIC. The performance of CRp criterion with P3–P7
over RBIC is remarkable. The penalties P3–P7 select an optimal model with a large percentage as
compared to other penalties. It is observed that τ̂1, τ̂2, τ̂4 performs better than τ̂3 and τ̂5. Hence, the
consideration of only non-zero residuals to estimate τ results in a good percentage for a small as well
as large sample size. τ̂4 performs better compared to others for small sample sizes; however, τ̂2 and
τ̂4 perform equally for large sample sizes. Thus, τ̂4 performs well in cases of small as well as large
sample sizes. For further study, we consider τ̂4 as an estimator of τ. CRp criterion with all penalties
performs well as the sample size increases. The simulation study confirms the consistency property
of CRp criterion for P4–P7 penalties.
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Table 2: Percentage of optimal model selection (Model-I)

n No. of
Outliers τ

CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7

30

0

τ̂1 74.0 86.1 95.7 88.8 94.5 96.7 98.6

64.6 84.0 54.7 92.0
τ̂2 87.1 95.0 98.8 96.4 98.3 99.2 99.5
τ̂3 66.9 78.6 90.4 81.8 88.2 91.8 95.7
τ̂4 91.8 97.6 99.5 98.0 99.4 99.4 98.8
τ̂5 65.3 77.7 89.5 81.1 87.1 91.0 95.3

1

τ̂1 65.7 79.4 93.0 83.0 90.5 94.9 98.2

13.9 12.5 43.5 84.8
τ̂2 80.4 91.1 98.6 93.9 97.9 98.8 99.2
τ̂3 57.1 70.5 85.1 73.8 81.3 86.8 92.6
τ̂4 87.2 96.1 99.7 97.2 99.2 99.6 98.3
τ̂5 55.6 69.2 84.3 72.9 80.0 86.0 91.5

2

τ̂1 64.2 77.6 90.9 80.5 88.8 92.6 96.5

3.3 2.0 43.3 80.8
τ̂2 78.5 89.2 97.1 92.0 95.8 97.6 97.9
τ̂3 54.6 69.4 84.7 73.6 80.6 86.4 92.3
τ̂4 85.5 93.3 98.4 94.6 97.8 98.4 97.5
τ̂5 53.7 68.3 83.5 72.0 79.4 86.0 91.8

3

τ̂1 62.0 77.2 90.4 80.1 86.8 91.9 96.0

2.4 0.7 40.3 78.7
τ̂2 77.7 87.9 95.8 90.4 94.5 96.1 98.2
τ̂2 54.3 66.8 80.0 70.3 77.0 82.6 88.2
τ̂4 83.4 92.8 98.1 94.8 97.2 98.2 97.1
τ̂5 53.0 65.4 79.1 68.9 76.6 81.4 87.8

50

0

τ̂1 73.6 85.7 95.7 91.9 95.0 98.4 99.3

64.5 87.8 57.7 94.1
τ̂2 89.0 95.5 99.0 98.1 99.0 99.9 99.9
τ̂3 66.4 79.9 91.5 88.0 91.2 95.8 98.1
τ̂4 88.3 95.3 98.8 98.0 98.7 99.9 99.9
τ̂5 77.7 88.3 96.2 93.6 96.2 98.8 99.2

1

τ̂1 68.9 83.7 93.7 89.5 93.6 98.2 99.4

23.6 22.8 57.1 90.8
τ̂2 85.9 94.4 99.2 97.8 99.0 99.7 99.9
τ̂3 62.9 76.9 90.0 85.7 89.8 94.7 97.5
τ̂4 85.3 94.1 99.1 97.8 99.0 99.6 99.9
τ̂5 74.5 85.3 95.1 91.1 94.9 98.6 99.3

2

τ̂1 68.6 80.9 93.1 88.1 92.9 97.4 99.0

7.8 4.5 52.9 88.3
τ̂2 84.4 93.1 98.7 97.1 98.6 99.5 99.8
τ̂3 64.0 76.3 89.6 83.1 88.9 94.7 96.8
τ̂4 83.6 92.7 98.6 96.5 98.6 99.5 99.7
τ̂5 72.7 84.7 94.6 90.1 94.1 98.0 98.9

3

τ̂1 67.7 80.9 92.3 86.8 92.2 97.1 98.8

6.1 1.5 50.3 86.4
τ̂2 83.4 92.8 98.2 96.4 98.1 99.4 99.9
τ̂3 60.8 74.6 86.8 81.1 86.0 93.8 97.0
τ̂4 82.9 92.7 98.1 96.1 97.9 99.4 99.9
τ̂5 71.6 83.6 93.6 88.8 92.9 97.4 99.0

70

0

τ̂1 74.1 85.9 96.1 94.8 96.5 98.7 99.5

65.7 90.7 62.3 95.3
τ̂2 89.0 96.0 98.7 98.1 98.9 100.0 100.0
τ̂3 78.8 90.8 96.5 95.4 96.9 99.2 99.8
τ̂4 88.4 95.7 98.6 98.0 98.8 100.0 100.0
τ̂5 77.9 90.3 96.4 95.4 96.7 99.2 99.8

1

τ̂1 72.3 85.4 94.2 92.1 94.7 98.6 99.4

36.6 33.4 61.1 93.9
τ̂2 88.2 94.0 98.5 97.4 98.7 99.9 99.9
τ̂3 77.7 88.7 95.8 94.0 96.1 99.4 99.7
τ̂4 87.9 93.6 98.2 97.4 98.6 99.9 99.9
τ̂5 77.0 88.1 95.4 94.0 95.8 99.4 99.7

2

τ̂1 69.8 83.1 95.0 91.8 95.5 99.0 99.7

16.4 9.8 56.9 92.6
τ̂2 84.4 94.8 98.7 97.9 99.3 100.0 100.0
τ̂3 74.6 87.3 96.4 94.2 96.8 99.5 99.9
τ̂4 83.9 94.4 98.7 97.7 99.0 100.0 100.0
τ̂5 74.3 86.7 96.0 94.0 96.7 99.5 99.8

Continued. . .



280 K. S. Shende, D. N. Kashid

n No. of
Outliers τ

CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7

3

τ̂1 69.9 81.8 93.4 90.1 94.0 98.5 99.1

10.4 4.1 54.7 90.8
τ̂2 83.7 92.5 98.2 97.1 98.3 99.6 99.8
τ̂3 73.8 85.9 94.7 93.0 95.7 99.1 99.4
τ̂4 83.1 92.4 98.2 97.0 98.3 99.6 99.8
τ̂5 73.3 85.5 94.6 92.6 95.4 99.1 99.3

100

0

τ̂1 72.1 85.3 95.1 94.1 96.4 99.5 99.8

67.8 92.6 66.5 95.7
τ̂2 88.8 96.3 99.1 98.8 99.4 100.0 100.0
τ̂3 78.8 89.2 96.9 96.4 97.4 99.7 100.0
τ̂4 88.6 96.2 99.1 98.8 99.4 100.0 100.0
τ̂5 78.4 89.1 96.9 96.4 97.3 99.7 100.0

1

τ̂1 69.5 83.4 93.4 92.2 95.9 99.7 99.9

47.1 43.9 62.6 94.2
τ̂2 88.1 95.0 99.7 99.4 99.8 100.0 100.0
τ̂3 75.7 87.7 96.1 95.1 97.8 99.7 99.9
τ̂4 87.9 94.6 99.7 99.4 99.7 100.0 100.0
τ̂5 75.4 87.5 95.9 94.9 97.5 99.7 99.9

2

τ̂1 67.1 81.0 93.6 91.2 95.4 99.2 99.5

30.6 17.8 58.2 93.3
τ̂2 85.9 95.0 98.5 98.1 99.0 99.9 100.0
τ̂3 74.4 86.4 96.1 95.1 96.9 99.3 99.7
τ̂4 85.7 95.0 98.4 98.1 99.0 99.9 100.0
τ̂5 73.9 86.1 95.7 95.0 96.9 99.3 99.7

3

τ̂1 69.0 82.1 94.1 93.4 96.0 99.1 99.8

22.5 8.5 58.2 94.2
τ̂2 88.1 95.0 98.8 98.2 99.1 99.9 100.0
τ̂3 74.6 87.2 95.7 94.9 97.1 99.5 99.8
τ̂4 87.7 95.0 98.8 98.2 99.1 99.9 100.0
τ̂5 74.5 87.0 95.6 94.7 96.9 99.5 99.8

200

0

τ̂1 69.7 83.3 94.0 94.6 97.1 100.0 100.0

67.0 94.6 66.0 97.0
τ̂2 88.5 96.0 99.7 99.8 99.8 100.0 100.0
τ̂3 82.3 91.7 98.0 98.7 99.3 100.0 100.0
τ̂4 88.4 95.9 99.7 99.7 99.8 100.0 100.0
τ̂5 81.9 91.7 98.0 98.6 99.3 100.0 100.0

1

τ̂1 70.9 83.4 95.3 95.9 97.5 100.0 100.0

65.4 72.9 66.5 97.5
τ̂2 90.3 96.6 99.3 99.7 99.8 100.0 100.0
τ̂3 82.2 92.7 98.2 98.6 99.4 100.0 100.0
τ̂4 90.1 96.6 99.3 99.7 99.8 100.0 100.0
τ̂5 82.1 92.6 98.2 98.6 99.3 100.0 100.0

2

τ̂1 67.7 81.1 93.7 94.4 97.0 99.9 100.0

62.9 54.4 67.5 96.4
τ̂2 87.3 95.6 99.3 99.3 99.7 100.0 100.0
τ̂3 80.0 90.3 98.3 98.5 98.9 100.0 100.0
τ̂4 87.0 95.4 99.2 99.3 99.7 100.0 100.0
τ̂5 79.6 90.1 98.3 98.5 98.9 100.0 100.0

3

τ̂1 69.5 82.3 93.4 94.2 96.5 100.0 100.0

52.1 37.6 67.3 96.2
τ̂2 86.8 95.3 99.5 99.6 99.9 100.0 100.0
τ̂3 81.2 91.3 97.9 98.3 99.3 100.0 100.0
τ̂4 86.8 95.1 99.5 99.6 99.9 100.0 100.0
τ̂5 81.0 91.2 97.9 98.3 99.3 100.0 100.0

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

3.2. Real data (Hald cement data)

The performance of the proposed criterion is examined with real-life data. This section analyze a
Hald cement dataset (Ronchetti and Staudte, 1994). Hald cement data has 13 observations on the heat
evolved in calories per gram of cement (y) and four ingredients in the mixture: tricalcium aluminate
(X1), tricalcium silicate (X2), tetracalcium aluminoferrite (X3) and dicalcium silicate (X4). Many
researchers have considered this data for model selection problem and suggested X1, X2 predictor
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Table 3: Percentage of optimal model selection (Model-II)

n No. of
Outliers τ

CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7

30

0

τ̂1 78.0 88.2 97.4 90.7 95.2 97.5 99.2

61.1 77.7 48.9 89.2
τ̂2 89.2 95.7 99.2 97.2 99.0 99.0 96.0
τ̂3 54.3 66.9 85.4 70.8 78.6 85.4 91.0
τ̂4 87.9 95.3 99.3 96.7 98.9 99.0 97.0
τ̂5 52.6 65.3 84.4 68.9 77.7 84.5 90.7

1

τ̂1 71.5 81.8 95.2 86.2 92.1 95.5 97.0

9.7 8.8 44.9 84.4
τ̂2 83.8 92.9 97.6 94.7 96.9 97.2 94.9
τ̂3 50.2 62.0 77.7 64.8 71.7 78.0 85.7
τ̂4 82.6 92.3 97.7 94.1 96.8 97.3 95.8
τ̂5 48.3 61.1 76.6 63.9 70.4 76.8 84.9

2

τ̂1 70.2 82.6 94.6 85.1 91.6 94.8 97.6

1.9 1.2 39.9 82.0
τ̂2 83.7 92.6 97.8 94.2 96.5 97.3 95.2
τ̂3 46.4 60.5 77.5 63.9 71.6 77.9 84.7
τ̂4 82.5 91.7 97.8 93.7 95.9 97.3 96.4
τ̂5 45.3 59.2 76.2 63.0 70.5 76.4 84.0

3

τ̂1 65.0 79.9 93.6 83.9 90.3 93.5 97.5

1.0 0.2 39.8 76.6
τ̂2 80.3 91.2 97.4 93.7 96.3 97.2 94.4
τ̂3 43.5 56.9 74.1 60.2 68.9 74.3 83.1
τ̂4 78.6 90.0 97.3 92.7 96.1 96.9 94.8
τ̂5 42.1 55.8 73.3 58.9 67.5 73.3 82.4

50

0

τ̂1 74.8 88.2 97.0 93.1 96.3 98.8 99.7

66.0 87.7 57.9 93.7
τ̂2 86.5 94.0 99.3 97.0 98.7 99.8 99.9
τ̂3 62.0 73.9 88.0 80.8 84.9 93.0 96.1
τ̂4 90.2 96.4 99.5 98.7 99.4 100.0 100.0
τ̂5 73.2 83.7 94.6 89.8 94.0 97.2 98.3

1

τ̂1 72.7 84.6 95.6 90.6 94.4 97.9 99.1

18.7 16.0 53.6 88.5
τ̂2 82.6 92.1 98.2 95.7 97.9 99.2 99.8
τ̂3 57.7 69.9 87.1 79.9 85.2 92.4 95.1
τ̂4 87.6 94.8 99.0 97.5 98.7 99.7 99.9
τ̂5 69.7 81.2 94.3 88.6 92.5 96.4 97.9

2

τ̂1 70.2 84.3 95.6 91.2 94.3 96.9 98.8

5.0 3.2 51.6 88.8
τ̂2 82.2 91.6 97.6 95.4 97.4 98.8 99.6
τ̂3 55.6 68.2 86.9 77.6 84.6 92.1 94.4
τ̂4 87.2 94.1 98.9 96.9 98.3 99.7 100.0
τ̂5 67.4 81.4 92.6 88.1 91.9 95.6 97.8

3

τ̂1 68.6 80.4 95.0 88.4 93.3 97.6 98.9

2.1 0.7 47.3 86.5
τ̂2 78.9 90.8 97.9 95.3 97.4 99.1 99.8
τ̂3 53.9 66.0 84.2 74.2 81.9 89.2 94.1
τ̂4 83.5 93.8 98.9 97.1 98.4 99.8 100.0
τ̂5 65.6 76.8 92.1 84.0 90.0 96.5 98.1

70

0

τ̂1 70.4 83.1 96.7 92.6 96.5 99.6 99.8

67.0 89.1 60.0 95.6
τ̂2 87.8 96.0 99.7 99.0 99.7 100.0 100.0
τ̂3 73.4 85.4 95.8 92.2 95.4 99.0 99.8
τ̂4 87.2 95.8 99.7 98.8 99.7 99.9 100.0
τ̂5 72.8 85.2 95.4 91.9 95.2 99.0 99.8

1

τ̂1 70.1 82.5 95.0 91.1 94.4 99.3 99.6

26.0 26.2 57.8 90.9
τ̂2 86.8 95.0 99.5 98.4 99.2 100.0 100.0
τ̂3 72.8 83.6 95.8 91.9 95.2 99.2 99.9
τ̂4 86.5 94.6 99.2 98.2 99.2 100.0 100.0
τ̂5 72.1 83.2 95.4 91.7 95.0 99.1 99.9

2

τ̂1 68.1 81.8 94.9 91.0 94.7 99.0 99.6

9.4 5.2 53.1 92.1
τ̂2 86.8 95.0 99.5 98.6 99.4 100.0 100.0
τ̂3 68.4 83.7 95.6 91.8 95.4 98.7 99.3
τ̂4 86.1 94.5 99.5 98.4 99.4 100.0 100.0
τ̂5 67.9 83.0 95.5 91.6 95.1 98.7 99.2

Continued. . .
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n No. of
Outliers τ

CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7

3

τ̂1 66.7 80.7 93.5 89.5 93.1 98.1 99.1

4.6 0.8 55.1 89.9
τ̂2 84.5 93.7 98.4 97.4 98.4 99.9 100.0
τ̂3 70.1 82.4 93.7 89.7 93.1 98.4 98.9
τ̂4 84.0 92.9 98.4 97.4 98.3 99.9 100.0
τ̂5 69.7 82.0 93.5 89.5 92.8 98.3 98.9

100

0

τ̂1 71.9 83.6 96.4 94.1 96.6 99.8 99.8

68.2 93.1 63.7 95.3
τ̂2 85.7 94.7 99.4 98.9 99.5 100.0 100.0
τ̂3 73.3 84.7 95.8 94.1 96.2 99.6 99.8
τ̂4 88.9 96.1 99.7 99.4 99.8 100.0 100.0
τ̂5 73.2 84.4 95.6 93.8 96.0 99.6 99.8

1

τ̂1 72.8 85.3 97.0 95.8 97.5 99.8 99.8

38.4 37.7 62.7 95.7
τ̂2 88.9 96.3 99.7 99.2 99.7 99.9 100.0
τ̂3 75.5 87.3 97.5 95.5 97.7 99.5 99.9
τ̂4 90.3 97.1 99.7 99.5 99.8 100.0 100.0
τ̂5 75.2 87.0 97.5 95.5 97.6 99.5 99.9

2

τ̂1 71.3 83.1 95.4 93.5 95.9 99.8 99.9

18.8 11.1 63.6 94.5
τ̂2 85.1 93.8 99.3 98.9 99.6 100.0 100.0
τ̂3 72.4 84.8 96.0 93.9 96.5 99.5 99.7
τ̂4 87.5 95.5 99.7 99.3 99.7 100.0 100.0
τ̂5 72.0 84.2 96.0 93.8 96.5 99.5 99.7

3

τ̂1 68.9 82.1 94.9 91.9 95.1 99.2 99.7

11.3 3.5 59.6 92.2
τ̂2 84.1 93.6 98.5 97.9 98.8 99.9 99.9
τ̂3 70.3 82.8 94.9 92.1 95.4 99.3 99.6
τ̂4 87.1 95.0 99.0 98.6 99.1 99.9 100.0
τ̂5 69.9 82.5 94.6 91.9 95.2 99.3 99.6

200

0

τ̂1 69.6 83.1 95.9 95.6 97.2 99.6 99.9

69.7 94.2 66.1 96.8
τ̂2 88.5 96.2 99.3 99.2 99.3 100.0 100.0
τ̂3 79.7 89.4 97.9 97.7 98.7 100.0 100.0
τ̂4 88.4 96.1 99.3 99.1 99.3 100.0 100.0
τ̂5 79.5 89.2 97.9 97.6 98.7 100.0 100.0

1

τ̂1 72.1 85.9 96.7 96.6 97.9 99.9 99.9

60.4 59.4 67.8 97.3
τ̂2 91.6 96.9 99.6 99.6 99.8 100.0 100.0
τ̂3 81.3 91.6 98.4 98.3 98.7 100.0 100.0
τ̂4 91.5 96.9 99.6 99.6 99.8 100.0 100.0
τ̂5 81.0 91.6 98.4 98.3 98.7 100.0 100.0

2

τ̂1 71.7 84.0 95.4 95.1 97.5 99.9 99.9

48.8 39.2 66.9 95.5
τ̂2 89.3 96.1 99.4 99.3 99.9 100.0 100.0
τ̂3 82.4 91.4 98.0 98.0 98.8 99.9 100.0
τ̂4 89.2 96.0 99.3 99.3 99.9 100.0 100.0
τ̂5 82.3 91.3 98.0 97.9 98.7 99.9 100.0

3

τ̂1 72.3 84.4 96.6 96.2 97.9 100.0 100.0

41.9 19.5 64.1 96.7
τ̂2 90.2 96.9 99.9 99.8 100.0 100.0 100.0
τ̂3 80.2 90.7 98.2 98.1 99.4 100.0 100.0
τ̂4 89.7 96.9 99.9 99.7 100.0 100.0 100.0
τ̂5 80.1 90.7 98.2 98.1 99.4 100.0 100.0

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

variables for Hald data. The 6th observation has maximum absolute residual, to introduce an outlier
by replacing the 6th observation to 200 (Ronchetti and Staudte, 1994; Kashid and Kulkarni, 2002).
The values of CRp, AIC, BIC, RAIC, and RBIC for all possible subsets are recorded for original and
outlier data in Tables 4 and 5. It is observed that the presence of outliers do not affect the value of
CRp. The CRp criterion with all penalties selects X1, X2 variables for clean data as well as outlier data.
The AIC criterion selects X1, X2, X4 variables in clean data, and selects X1, X4 variables in the case of
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Table 4: Hald Cement data (original)

Sr.
No. Submodel CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7
1 X1 22.3272 24.3272 21.0997 23.4571 25.4571 25.5383 29.5383 102.4119 104.1067 12.2956 7.1850
2 X2 17.3189 19.3189 16.0915 18.4488 20.4488 20.5300 24.5300 98.0704 99.7652 16.0992 9.1288
3 X3 27.1334 29.1334 25.9060 28.2633 30.2633 30.3445 34.3445 107.9598 109.6547 10.8062 6.7160
4 X4 17.4910 19.4910 16.2636 18.6209 20.6209 20.7021 24.7021 97.7440 99.4389 12.4251 7.4164
5 X1, X2 6.9781 9.9781 7.5698 8.6730 11.6730 11.7948 17.7948 64.3124 66.5722 15.5191 9.1283
6 X1, X3 26.1143 29.1143 26.7060 27.8091 30.8091 30.9309 36.9309 104.0091 106.2689 11.2779 7.7057
7 X1, X4 7.0266 10.0266 7.6183 8.7215 11.7215 11.8433 17.8433 67.6341 69.8939 12.1404 8.1164
8 X2, X3 14.2547 17.2547 14.8464 15.9496 18.9496 19.0714 25.0714 89.9295 92.1893 18.9980 10.7771
9 X2, X4 20.6127 23.6127 21.2043 22.3075 25.3075 25.4293 31.4293 99.5217 101.7815 16.9889 10.1520
10 X3, X4 9.7554 12.7554 10.3470 11.4502 14.4502 14.5720 20.5720 78.7450 81.0048 29.2977 14.4117
11 X1, X2, X3 8.0552 12.0552 11.1455 10.3150 14.3150 14.4774 22.4774 63.9036 66.7283 15.3061 9.9429
12 X1, X2, X4 8.2061 12.2061 11.2965 10.4659 14.4659 14.6283 22.6283 63.8663 66.6910 14.5849 9.6446
13 X1, X3, X4 8.3405 12.3405 11.4308 10.6003 14.6003 14.7627 22.7627 64.6200 67.4447 11.8174 8.7352
14 X2, X3, X4 8.9205 12.9205 12.0109 11.1803 15.1803 15.3427 23.3427 69.4683 72.2930 18.9425 10.9302
15 X1, X2, X3, X4 10.0000 15.0000 16.0944 12.8247 17.8247 18.0278 28.0278 65.8367 69.2264 18.6140 11.9214

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

Table 5: Hald Cement data (with outlier, y6 = 200)

Sr.
No. Submodel CRp AIC BIC RAIC RBICP1 P2 P3 P4 P5 P6 P7
1 X1 22.3272 24.3272 21.0997 23.4571 25.4571 25.5383 29.5383 129.1893 130.8842 25.6844 14.0531
2 X2 17.3189 19.3189 16.0915 18.4488 20.4488 20.5300 24.5300 129.1579 130.8527 48.6441 25.1826
3 X3 27.1334 29.1334 25.906 28.2633 30.2633 30.3445 34.3445 130.8619 132.5567 26.0959 14.0554
4 X4 17.4910 19.4910 16.2636 18.6209 20.6209 20.7021 24.7021 128.9758 130.6706 35.3433 18.6954
5 X1, X2 6.9781 9.9781 7.5698 8.6730 11.6730 11.7948 17.7948 128.5246 130.7844 120.7875 61.7610
6 X1, X3 26.1143 29.1143 26.7060 27.8091 30.8091 30.9309 36.9309 131.0793 133.3391 28.2995 15.8754
7 X1, X4 7.0266 10.0266 7.6183 8.7215 11.7215 11.8433 17.8433 128.4488 130.7086 95.9106 49.7983
8 X2, X3 14.2547 17.2547 14.8464 15.9496 18.9496 19.0714 25.0714 129.7412 132.0010 66.9138 34.7348
9 X2, X4 20.6127 23.6127 21.2043 22.3075 25.3075 25.4293 31.4293 130.9744 133.2342 48.8001 25.7217

10 X3, X4 9.7554 12.7554 10.3470 11.4502 14.4502 14.5720 20.5720 128.9457 131.2055 122.8992 61.2152
11 X1, X2, X3 8.0552 12.0552 11.1455 10.3150 14.3150 14.4774 22.4774 130.4785 133.3033 126.1412 65.3541
12 X1, X2, X4 8.2061 12.2061 11.2965 10.4659 14.4659 14.6283 22.6283 130.4350 133.2597 121.2171 62.9619
13 X1, X3, X4 8.3405 12.3405 11.4308 10.6003 14.6003 14.7627 22.7627 130.4121 133.2369 103.8295 54.7412
14 X2, X3, X4 8.9205 12.9205 12.0108 11.1803 15.1803 15.3427 23.3427 130.3519 133.1767 117.7132 60.3156
15 X1, X2, X3, X4 10.0000 15.0000 16.0944 12.8247 17.8247 18.0278 28.0278 132.3519 135.7416 137.6374 71.4468

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

an outlier. However, BIC selects X1, X2 variables in clean data, but in case of an outlier it selects only
X4 variable. RAIC and RBIC select same variable X3 only in clean data, and X1 only in presence of
an outlier.

The selection of a model from all possible subsets will become more complicated and time con-
suming as the number of predictor variables increase. For example, if k − 1 = 30 then it is necessary
to check more than a billion subsets for model selection. So, in this situation, it is reasonable to use a
kick-off (Rao and Wu, 1989) or stepwise approach.

4. Algorithms for model selection

The kick-off method is based on an OLS estimator that is not robust to outliers in the data. To
overcome this problem, we have modified the kick-off approach based on the LAD estimator for
variable selection. The CRp based kick-off method is explained below.
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1. Kick-off method

1) Calculate D−i = CRk−i −Cn(k), where CRk−i is the value of criterion corresponding to predictor
variables excluding the ith predictor variable and Cn(k) penalty function of the full model.

2) If D−i ≤ 0 then βi = 0, else βi , 0, i = 1, 2, . . . , k − 1. Hence, select predictor variables for
which D−i > 0.

Alternative sequential and stepwise algorithms are described below. Let S ⊆ A = {1, 2, 3, . . . , k −
1} is an index set of selected predictor variables. The sum of absolute residuals for S = { } is
|y −Median(y)|′1.

2. Sequential method

1) Consider LAD estimator β̂ of the full model, and using the statistical test explained by Birkes
and Dodge (1993, pp. 76–77) to test the null hypothesis, H0 : β{ j:|β̂ j |≤Median(|β̂ j |)} = 0. If the null
hypothesis is rejected at α% level of significance, then repeat Steps 3.1–3.3 until we get final
model. If null hypothesis is not rejected, then repeat Steps 2.1-2.3.

2) Forward direction:

2.1) Initially, consider S = { } null set.
2.2) Add a new jth ∈ F = Sc ∩A predictor variable to the previous set if j = arg max j′∈F (CRp

(S) − CRp(S ∪ { j′})) and D j = CRp(S) − CRp(S ∪ { j}) > 0 i.e., the difference CRp(S) −
CRp(S ∪ { j}) is positive and large over all unselected predictor variables (F ).

2.3) Repeat Step 2.2 until no other variable is selected.

3) Backward direction:

3.1) Initially, consider S = A.
3.2) Delete lth ∈ S predictor variable if l = arg maxl′∈S(CRp(S) − CRp(S − l

′
)) and Dl =

CRp(S) − CRp(S − l) ≥ 0 i.e., CRp(S) − CRp(S − l) is non-negative and large over all
selected predictor variables (S).

3.3) Repeat Step 3.2 until no other variable is deleted.

3. Stepwise method

1) Initially, consider S = { } null set.

2) Add a new jth ∈ F predictor variable to the previous set if j = arg max j′∈F (CRp(S) −CRp(S ∪
{ j′})) andD j = CRp(S) −CRp(S ∪ { j}) > 0.

a) If any new predictor variable is not included in the null set S = {} or a singleton set, then
stop.

b) If |S| < 2, then repeat same Step 2, else go to the next step. |S| is a cardinality of set S.

3) Delete lth ∈ S predictor variable if l = arg maxl′∈S(CRp(S) − CRp(S − l
′
)) andDl = CRp(S) −

CRp(S − l) ≥ 0 and go to Step 2.

4) Continue Step 2 and Step 3 until consequent S does not change.
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4.1. Addition and deletion criteria

• Addition: The new jth ∈ F predictor variable is added to the previous set S if D j > 0 and maxi-
mum.

i.e., CRp(S) −CRp(S ∪ { j}) > 0 and maximum

⇐⇒ 2
τn

((
n − k + |S|

)
|y − ŷS|

′1 −
(
n − k + |S| + 1

)
|y − ŷS∪j|

′1
)
+ 2

τn |y − ŷ f |
′1 +Cn(|S|) −Cn(|S| + 1)

maximum

⇐⇒ 2
τn

(
n − k + |S|

)(
|y − ŷS|

′1 − |y − ŷS∪j|
′1 − 1

n−k+|S| |y − ŷS∪j|
′1

)
maximum

⇐⇒ ψ1 =
2
τ

(
|y − ŷS|

′1 − |y − ŷS∪j|
′1

)
maximum

Here, ŷS and ŷS∪j are vectors of fitted values obtained from set of predictor variables corresponding
to sets S and S ∪ j respectively. The ψ1 follows F1,n−|S|−2 distribution (Birkes and Dodge, 1993);
therefore, select X j if ψ1 is maximum and ψ1 > Fα,1,n−|S|−2.

• Deletion: We delete predictor variable Xl from existing set S if Dl ≥ 0 and maximum over all
selected predictor variables.

i.e., CRp(S) −CRp(S − l) maximum

⇐⇒ CRp(S − l) −CRp(S) ≤ 0 and minimum

⇐⇒ 2
τn

((
n − k + |S| − 1

)
|y − ŷS−l|

′1 −
(
n − k + |S|

)
|y − ŷS|

′1
)
+ 2

τn |y − ŷ f |
′1 +Cn(|S| − 1) −Cn(|S|)

minimum

⇐⇒ 2
τn

(
n − k + |S| − 1

)(
|y − ŷS−l|

′1 − |y − ŷS|
′1 − 1

n−k+|S|−1 |y − ŷS|
′1

)
minimum

⇐⇒ ψ2 =
2
τ

(
|y − ŷS−l|

′1 − |y − ŷS|
′1

)
minimum

The ψ2 follows F1,n−|S|−1 distribution (Birkes and Dodge,1993) and delete Xl if ψ2 is minimum and
ψ2 < Fα,1,n−|S|−1.

Alternatively, we can select X j if ψ1 > χ
2
α,1 and delete Xl if ψ2 < χ

2
α,1 for large n. Thus, the minimiza-

tion and distribution based addition and deletion rules are equivalent.

Corollary 1. The kick-off, sequential and stepwise algorithms select the optimal model with proba-
bility one for a large sample size.

Proof: The proof is given separately for kick-off algorithm and other two algorithms.

• Kick-off method: If relevant predictor variable is deleted, then the reduced model belongs toMw.
For the full model Dp = 0, and the full model belongs toMc. By (2.7),

lim inf
n→∞

Pr
(
D−i > 0

)
= 1 (4.1)
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Similarly, if irrelevant predictor variable deleted, then the reduced model belongs toMc. By Con-
dition 2 and |y − ŷc|′1 = |y − ŷ f |′1 = Op(1),

lim inf
n→∞

Pr
(
D−i < 0

)
= lim inf

n→∞
Pr

(
CRk−i −Cn(k) < 0

)
= lim inf

n→∞
Pr

(
Op(1) +Cn(k − 1) −Cn(k) < 0

)
≥ Pr

(
lim inf

n→∞
Op(1) +Cn(k − 1) −Cn(k) < 0

)
= 1. (4.2)

Hence, the kick-off method selects only relevant predictor variables with probability one for large
n.

• Stepwise and sequential method:

◦ Addition: Consider r1 ∈ F and r2 ∈ F are indices corresponding to the relevant and irrelevant
predictor variable respectively. After adding r1 in the present set S, the value of |y− ŷ|′1 is smaller
than after adding r2 in a set S. It is equivalent to |y − ŷS∪{r2}|

′1 > |y − ŷS∪{r1}|
′1 hold ∀r1, r2 ∈ F .

Since, card(S ∪ {r1}) = card(S ∪ {r2}) = s1 (say)

CRp(S ∪ {r2}) −CRp(S ∪ {r1})

=
2
τ

((
1 − k − s1

n

) ∣∣∣y − ŷS∪{r2}
∣∣∣′ 1 − |y − ŷS∪{r1}|

′
1
)
+

2(k − s1)
τn

|y − ŷS∪{r1}|
′
1

=
2
τ

(
1 − k − s1

n

) (
|y − ŷS∪{r2}|

′
1 − |y − ŷS∪{r1}|

′
1
)

(4.3)

and

lim inf
n→∞

Pr
(
CRp(S ∪ {r2}) > CRp(S ∪ {r1})

)
≥ Pr

(
lim inf

n→∞

2
τ

(
1 − k − s1

n

) (∣∣∣y − ŷS∪{r2}
∣∣∣′ 1 −

∣∣∣y − ŷS∪{r1}
∣∣∣′ 1

)
> 0

)
= 1.

=⇒ lim inf
n→∞

Pr
(
CRp(S) −CRp(S ∪ {r1}) > CRp(S) −CRp(S ∪ {r2})

)
= 1. (4.4)

◦ Deletion: Suppose r3 ∈ S and r4 ∈ S are indices corresponding to the relevant and irrelevant
predictor variable respectively. If we delete r3 and r4 from the present set S, then |y − ŷS−r3 |

′1 >
|y − ŷS−r4 |

′1 hold ∀r3, r4 ∈ S.
Since, card(S − r3) = card(S − r4) = s2 (say)

CRp(S − r3) −CRp(S − r4) =
2
τ

((
1− k − s2

n

) ∣∣∣y − ŷS−r3

∣∣∣′1 − ∣∣∣y − ŷS−r4

∣∣∣′1)+ 2(k − s2)
τn

∣∣∣y − ŷS−r4

∣∣∣′1
=

2
τ

(
1 − k − s2

n

) (∣∣∣y − ŷS−r3

∣∣∣′1 − ∣∣∣y − ŷS−r4

∣∣∣′ 1
)

(4.5)
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Table 6: Performance of algorithms in presence of outliers

n
(k/n)

% of
outliers

Kick-off method Sequential method Stepwise method
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7

200
(1/2)

0% 82.5 91.4 100.0 100.0 96.3 96.3 96.4 96.4 99.9 99.9 100.0 100.0
2% 68.8 80.8 99.7 100.0 94.4 94.6 94.6 94.6 99.8 100.0 100.0 100.0
4% 60.0 75.2 99.4 99.8 96.3 96.5 96.7 96.7 99.6 99.8 100.0 100.0
6% 56.8 71.2 98.8 99.3 94.7 95.7 96.0 95.9 98.7 99.7 100.0 99.9
8% 57.7 72.2 99.4 99.9 93.8 93.9 94.0 93.7 99.8 99.9 100.0 99.7
10% 58.4 73.1 98.4 97.9 94.0 94.4 94.2 92.9 99.6 100.0 99.8 98.3

300
(1/3)

0% 85.4 93.7 100.0 100.0 98.8 99.3 99.6 99.6 99.2 99.7 100.0 100.0
2% 79.9 87.9 100.0 100.0 98.2 98.9 98.9 98.9 99.3 100.0 100.0 100.0
4% 75.0 86.5 100.0 100.0 97.2 98.2 98.8 98.8 98.4 99.4 100.0 100.0
6% 67.6 80.5 100.0 100.0 97.4 98.4 99.4 99.4 98.0 99.0 100.0 100.0
8% 65.9 79.3 99.9 100.0 97.6 99.1 99.6 99.6 98.0 99.5 100.0 100.0
10% 61.2 75.6 100.0 100.0 97.3 98.6 99.5 99.5 97.8 99.1 100.0 100.0

400
(1/4)

0% 90.2 95.6 100.0 100.0 98.4 99.2 99.8 99.8 98.6 99.4 100.0 100.0
2% 83.9 92.1 100.0 100.0 97.8 99.3 100.0 100.0 97.8 99.3 100.0 100.0
4% 79.1 89.7 100.0 100.0 97.0 99.2 99.9 99.9 97.1 99.3 100.0 100.0
6% 75.6 85.9 100.0 100.0 96.3 98.2 99.7 99.7 96.5 98.5 100.0 100.0
8% 70.1 83.2 100.0 100.0 97.0 98.2 99.7 99.7 97.2 98.5 100.0 100.0
10% 66.0 79.2 100.0 100.0 95.3 98.2 99.7 99.7 95.6 98.5 100.0 100.0

500
(1/5)

0% 93.7 97.6 100.0 100.0 98.5 99.4 100.0 100.0 98.5 99.4 100.0 100.0
2% 88.3 95.3 100.0 100.0 97.7 99.0 100.0 100.0 97.7 99.0 100.0 100.0
4% 88.3 94.3 100.0 100.0 98.0 99.4 100.0 100.0 98.0 99.4 100.0 100.0
6% 83.1 89.5 100.0 100.0 96.5 98.7 100.0 100.0 96.5 98.7 100.0 100.0
8% 77.6 88.3 100.0 100.0 96.0 99.2 100.0 100.0 96.0 99.2 100.0 100.0
10% 75.1 85.8 100.0 100.0 94.0 97.5 100.0 100.0 94.0 97.5 100.0 100.0

and

lim inf
n→∞

Pr
(
CRp(S − r3) > CRp(S − r4)

)
≥ Pr

(
lim inf

n→∞

2
τ

(
1 − k − s2

n

) (∣∣∣y − ŷS−r3

∣∣∣′ 1 −
∣∣∣y − ŷS−r4

∣∣∣′ 1
)
> 0

)
= 1.

=⇒ lim inf
n→∞

Pr
(
CRp(S) −CRp(S − r3) < CRp(S) −CRp(S − r4)

)
= 1. (4.6)

◦ Stopping: By Theorem 1, if the present set S is an index set corresponding to optimal model then

lim
n→∞

Pr
(
CRp(S) −CRp(S ∪ {r2}) < 0

)
= 1, ∀r2 ∈ F ,

lim
n→∞

Pr
(
CRp(S) −CRp(S − r3) < 0

)
= 1, ∀r3 ∈ S.

(4.7)

By (4.4), (4.6), and (4.7), the procedure of addition of relevant predictor variable (rth
1 ∈ F ) and

deletion of irrelevant predictor variable (rth
4 ∈ S) continue until getting optimal model, and the algo-

rithms select the optimal model with probability one for large n. �

The CRp, AIC, BIC, RAIC, and RBIC criteria requires computing 2k−1 − 1 criterion values to select
the optimal model; however, the kick-off method needs to check only k − 1 criterion values. In
the sequential method, we fix the forward or backward direction to minimize time by using step 1;
therefore, the sequential method requires 1 +

∑k−1
i=max(pαo ,k−pαo−1) i criterion values, pαo is an actual
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Table 7: Performance of algorithms in presence of non-normal errors

n
(k/n)

Distribution
of error

Kick-off method Sequential method Stepwise Method
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7

200
(1/2)

N(0, 3) 81.8 88.7 89.1 80.6 95.1 95.1 79.7 62.9 99.8 99.8 82.1 64.0
0.95N(0, 1) + 0.05N(0, 3) 81.0 91.0 100.0 100.0 95.8 95.8 95.8 95.8 99.9 99.9 99.9 99.9
0.9N(0, 1) + 0.1N(0, 3) 82.4 90.2 99.9 99.9 96.8 97.0 97.0 96.9 99.8 100.0 100.0 99.9

t2 83.4 91.3 94.1 89.3 95.9 95.9 88.4 76.8 100.0 100.0 90.1 77.2
Slash 20.0 15.2 0.4 0.2 64.3 47.6 0.5 0.4 70.8 50.6 0.4 0.4

Cauchy (0, 1) 59.9 54.5 7.9 4.8 87.1 82.2 10.3 4.6 97.3 91.6 10.5 4.1
Laplace (0, 1) 82.4 91.0 99.8 99.5 96.8 96.8 96.7 96.4 100.0 100.0 99.9 99.1

300
(1/3)

N(0, 3) 88.4 94.3 100.0 100.0 98.5 99.0 99.4 99.4 99.1 99.6 100.0 100.0
0.95N(0, 1) + 0.05N(0, 3) 86.4 92.4 100.0 100.0 98.8 99.4 99.9 99.9 98.9 99.5 100.0 100.0
0.9N(0, 1) + 0.1N(0, 3) 85.0 91.4 100.0 100.0 98.9 99.4 99.6 99.6 99.3 99.8 100.0 100.0

t2 88.9 95.4 100.0 100.0 99.2 99.3 99.4 99.4 99.8 99.9 100.0 100.0
Slash 88.4 93.8 33.8 23.3 98.0 98.0 58.5 39.7 100.0 100.0 56.8 37.0

Cauchy (0, 1) 87.6 94.1 94.2 90.4 97.1 97.1 95.5 92.5 100.0 100.0 98.3 95.0
Laplace (0, 1) 89.7 95.5 100.0 100.0 99.4 99.6 99.8 99.8 99.6 99.8 100.0 100.0

400
(1/4)

N(0, 3) 91.5 96.5 100.0 100.0 98.7 99.2 99.9 99.9 98.8 99.3 100.0 100.0
0.95N(0, 1) + 0.05N(0, 3) 90.3 95.6 100.0 100.0 98.9 99.8 100.0 100.0 98.9 99.8 100.0 100.0
0.9N(0, 1) + 0.1N(0, 3) 90.4 95.2 100.0 100.0 98.8 99.7 99.9 99.9 98.9 99.8 100.0 100.0

t2 91.2 95.9 100.0 100.0 99.8 100.0 100.0 100.0 99.8 100.0 100.0 100.0
Slash 92.4 97.0 93.3 89.2 99.7 99.7 98.3 95.9 100.0 100.0 98.3 95.7

Cauchy (0, 1) 91.8 95.5 100.0 100.0 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0
Laplace (0, 1) 92.5 96.4 100.0 100.0 99.6 99.8 100.0 100.0 99.6 99.8 100.0 100.0

500
(1/5)

N(0, 3) 92.9 97.2 100.0 100.0 98.5 99.4 100.0 100.0 98.5 99.4 100.0 100.0
0.95N(0, 1) + 0.05N(0, 3) 92.8 97.1 100.0 100.0 98.3 99.4 100.0 100.0 98.3 99.4 100.0 100.0
0.9N(0, 1) + 0.1N(0, 3) 92.6 97.0 100.0 100.0 98.7 99.8 100.0 100.0 98.7 99.8 100.0 100.0

t2 93.4 97.4 100.0 100.0 99.6 99.9 100.0 100.0 99.6 99.9 100.0 100.0
Slash 95.3 98.2 99.7 99.4 99.7 99.8 99.9 99.9 99.8 99.9 100.0 100.0

Cauchy (0, 1) 93.9 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Laplace (0, 1) 93.3 97.2 100.0 100.0 99.6 99.8 100.0 100.0 99.6 99.8 100.0 100.0

number of relevant predictor variables. The stepwise method might be required more than sequential
algorithm steps, but not more than 2k−1 − 1. Hence, the stepwise method is more time-consuming
when compared to the other two algorithms.

4.2. Performance and scalability of algorithms

4.2.1. Simulation study

The performance of LAD estimator based algorithms are studied through simulation. The predictor
variables X j, j = 1, 2, . . . , k − 1 are generated from N(0,Σ). Here, Σ is a symmetric positive definite
matrix such that Σii = 1, i = 1, 2, . . . , k − 1 and Σi j = 0.25, i , j = 1, 2, . . . , k − 1. The errors are
generated from N(0, 1) distribution with the response variable generated using regression coefficients
β = (5, 2, . . . , 2, 0, . . . , 0), where 5 is intercept, and only 10 regression coefficients are non-zero in 100
coefficients. Therefore, only 10% predictor variables are significant in the simulated data. Outliers are
introduced in the data by multiplying 20 to response variable y corresponding to maximum absolute
residuals. The simulation is carried out for different sample sizes n = 200, 300, 400, 500, and the
simulation results are recorded in Tables 6–8. In each table, we record the percentage of the optimal
model selection in 1,000 runs considering only P4–P7 penalties. It is expected that the criterion selects
only the first 10 predictor variables.
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Table 8: Performance of algorithms in presence of multicollinearity

n
(k/n) Σi j

Kick-off method Sequential method Stepwise method
P4 P5 P6 P7 P4 P5 P6 P7 P4 P5 P6 P7

200
(1/2)

0.00 81.1 90.2 99.8 100.0 99.7 99.9 95.1 87.6 99.8 100.0 94.9 87.6
0.50 80.5 89.0 99.9 99.9 87.8 87.9 87.9 87.9 99.9 100.0 100.0 99.8
0.55 80.5 90.5 100 99.6 87.0 87.3 87.3 86.3 99.6 99.9 99.8 98.6
0.60 81.5 90.2 99.7 99.3 85.0 85.1 84.8 84 99.9 100.0 99.6 98.5
0.65 80.8 90.2 99.1 97.9 84.2 84.2 84.1 82.5 99.9 99.9 99.6 97.4
0.70 79.8 88.7 97.7 93.7 81.7 81.8 80.5 76.6 99.8 99.9 98.5 92.6
0.75 81.7 90.4 89.8 80.2 81.7 81.9 75.6 67.2 99.7 100.0 91.5 78.7
0.80 80.5 89.6 71.4 57.5 76.3 76.4 61.7 47.4 99.8 99.9 75.9 55.7
0.90 61.0 54.5 6.0 2.7 71.9 66.3 4.0 1.6 93.3 83.2 2.6 0.8

300
(1/3)

0.00 85.8 94.8 100.0 100.0 99.1 99.7 100.0 100.0 99.1 99.7 100.0 100.0
0.50 86.2 92.8 99.9 100.0 97.3 98.1 98.2 98.2 99.1 99.9 100.0 100.0
0.55 86.0 91.7 100.0 100.0 96.4 96.9 97.0 97.0 99.4 99.9 100.0 100.0
0.60 86.6 93.8 100.0 100.0 96.2 96.8 96.9 96.9 99.2 99.8 100.0 100.0
0.65 87.8 93.9 100.0 100.0 95.7 96.0 96.2 96.2 99.5 99.8 100.0 100.0
0.70 87.3 93.8 100.0 100.0 95.7 95.8 96.2 96.2 99.4 99.6 100.0 100.0
0.75 88.7 94.6 99.9 99.9 95.6 96.2 96.4 96.4 99.2 99.8 100.0 100.0
0.80 85.5 92.9 99.6 99.1 92.6 93.9 94.1 94.0 98.4 99.8 100.0 99.9
0.90 85.1 92.0 54.2 39.7 92.7 93.5 70.6 54.7 98.8 99.6 64.6 46.6

400
(1/4)

0.00 89.8 93.7 100.0 100.0 98.5 99.4 100.0 100.0 98.5 99.4 100.0 100.0
0.50 91.5 96.6 100.0 100.0 98.8 99.5 99.8 99.8 99.0 99.7 100.0 100.0
0.55 88.6 94.4 100.0 100.0 98.2 98.9 99.2 99.2 99.0 99.7 100.0 100.0
0.60 92.0 95.9 100.0 100.0 97.6 98.9 99.1 99.1 98.5 99.8 100.0 100.0
0.65 90.5 94.1 100.0 100.0 97.1 97.9 98.3 98.3 98.8 99.6 100.0 100.0
0.70 91.1 96.4 100.0 100.0 98.1 98.6 99.1 99.1 99.0 99.5 100.0 100.0
0.75 89.8 96.0 100.0 100.0 98.2 98.8 99.2 99.2 99.0 99.6 100.0 100.0
0.80 88.5 94.1 100.0 100.0 97.5 98.6 98.8 98.8 98.7 99.8 100.0 100.0
0.90 89.5 94.8 90.2 83.3 96.8 97.7 95.7 93.3 99.0 99.9 96.9 93.1

500
(1/5)

0.00 93.2 96.2 100.0 100.0 99.1 99.6 100.0 100.0 99.1 99.6 100.0 100.0
0.50 93.7 97.4 100.0 100.0 98.6 99.7 100.0 100.0 98.6 99.7 100.0 100.0
0.55 94.3 97.7 100.0 100.0 98.9 99.4 99.9 99.9 99.0 99.5 100.0 100.0
0.60 92.7 96.2 100.0 100.0 98.0 99.2 99.8 99.8 98.2 99.4 100.0 100.0
0.65 93.1 96.7 100.0 100.0 98.4 99.4 99.6 99.6 98.8 99.8 100.0 100.0
0.70 94.6 97.7 100.0 100.0 99.0 99.7 100.0 100.0 99.0 99.7 100.0 100.0
0.75 92.6 96.6 100.0 100.0 98.1 99.2 99.5 99.5 98.6 99.7 100.0 100.0
0.80 92.9 96.2 100.0 100.0 98.3 99.1 99.4 99.4 98.9 99.7 100.0 100.0
0.90 93.0 97.2 98.7 97.8 97.9 99.1 99.3 99.0 98.5 99.7 99.9 99.5

The simulation is carried out for 2%, 4%, 6%, 8%, 10% contamination of outliers in the data,
and results are given in Table 6. The kick-off method performs poorly compared to sequential and
stepwise methods. It is observed that the stepwise method performs well compared to the sequential
method for the large k/n ratio; however, both methods perform equally for small k/n. The kick-off
method is also performs well for k/n = 1/5, and selects the optimal model with at least 75% accuracy.

The performance of the algorithms for non-normal error distribution has been studied using the
same model described above. We presented the simulation results (Table 7) with N(0, 3), 0.95N(0, 1)+
0.05N(0, 3), 0.9N(0, 1) + 0.1N(0, 3), t2, Slash, Cauchy (0, 1), Laplace (0, 1) error distributions. The
sequential and stepwise method also performs reasonably well compared to the kick-off method in
this case. All these algorithms have low percentages of model selection for large k/n and Slash,
Cauchy distributions. However, the percentage of optimal model selection increases as the sample
size increases for Slash and Cauchy error distributions. It is observed that the performance of criterion
varies with a penalty function.
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Table 9: Selected predictor variables in the body fat data

Criteria
Predictor Variables

Age
(yrs)

Weight
(lbs)

Height
(inches)

Adiposity
index (kg/m2)

Fat Free
Weight (lbs)

Circumference measure (cm)
Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist

CRp Criterion
CRp4 X X
CRp5 X X
CRp6 X X
CRp7 X X
AIC X X X X X X X X X X
BIC X X X X X X X

RAIC X X X X
RBIC X X X X

Kick-Off algorithm
KOp4 X X
KOp5 X X
KOp6 X X
KOp7 X X

Sequential algorithm
S p4 X X X
S p5 X X X
S p6 X X X
S p7 X X X

Stepwise algorithm
S Tp4 X X
S Tp5 X X
S Tp6 X X
S Tp7 X X

We also checked proficiency of the algorithms in the presence of multicollinearity (Table 8). The
capability of these methods is assessed by varying cov(Xi, X j) = Σi j values. The high value of Σi j

reveals severe multicollinearity. The percentage of the optimal model selection using algorithms
decays quickly for larger values of Σi j and k/n. The algorithms select an optimal model with high
precision up to the moderate multicollinearity. However, algorithms select optimal model for small
k/n with high precision.

Thus, algorithms select an optimal model with a high percentage, and the performance mostly
depends on the ratio k/n. The sequential method is faster than stepwise and performs well compared
to the kick-off.

4.2.2. Body fat dataset

A body fat dataset is freely available in R software and contains physical measurements of 252 males.
Measuring body fat is difficult compared to measuring height and weight. The physical measurements
are more informative to get the percentage of body fat. The percentage of body fat is calculated
using Bronzek’s equation and density, and it is considered as the response variable. Another 15
variables mentioned in Table 9 are considered as predictor variables. It is observed that the data have
outliers and residuals do not follow a Normal distribution (Figure 1). Consequently, the non-resistant
model selection methods will not be appropriate for this dataset. The predictor variables selected by
the proposed criterion with different penalties (CRp), AIC, BIC, RAIC, RBIC, and other algorithms
(Kick-Off (KOp), Sequential (S p), and Stepwise (S Tp)) are indicated in Table 9. The CRp, KOp, S Tp

selects only two predictor variables, weight and fat-free weight; however, a sequential method selects
one more predictor variable abdomen circumference. However, the AIC, BIC, RAIC, and RBIC select
different predictor variables. For a detailed study, we compared the prediction error of these methods.
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Figure 1: Normal probability plot.

Figure 2: Box plot of root mean square prediction error.

The 70% (176) observations are randomly chosen to select the significant predictor variables and
the remaining 30% (76) observations are used to calculate prediction error using selected predictor
variables and their LAD estimator. The performance of the proposed criterion with different penalties
(CRp), AIC, BIC, RAIC, RBIC, and other algorithms (Kick-Off (KOp), Sequential (S p), and Stepwise
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(S Tp)) has been examined by the root mean square prediction error (RMSPE) =
√∑76

i=1 (yi − ŷi)2/76.
This procedure is repeated 1,000 times. In Figure 2, boxplots of RMSPE for different methods are
plotted. It is observed that CRp criterion, sequential and stepwise methods have a small RMSPE
with low variation. However, the kick-off method with all penalties has a small RMSPE with a
small variation excluding P6 and P7. The RMSPE of the model selected by AIC and BIC is smaller
compared to RAIC and RBIC. The RMSPE of RAIC and RBIC indicate that both criteria do not
select a good model for this dataset. Thus, the real-life example reveals the scalability and stability of
algorithms.

5. Discussion

We have studied a robust model selection method for a class of different penalties. It is observed
that the criterion with the penalty satisfying Condition 2 performs well. It is shown that the model
selection criterion is consistent. The CRp criterion is time consuming when the number of predictor
variables (k) increases. LAD estimator-based algorithms will be the best option to overcome this
problem. These algorithms work well for outlier data as well as the non-normality of the error term.
The time required to select an optimal model for these algorithms is less than searching all possible
subsets; consequently, the sequential method is preferable. Criterion based algorithms are therefore
shows to have advantages such as robustness, consistency and fast.
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