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Abstract

We consider the problem of model selection in multiple linear regression with outliers and non-normal er-
ror distributions. In this article, the robust model selection criterion is proposed based on the robust estimation
method with the least absolute deviation (LAD). The proposed criterion is shown to be consistent. We sug-
gest proposed criterion based algorithms that are suitable for a large number of predictors in the model. These
algorithms select only relevant predictor variables with probability one for large sample sizes. An exhaustive
simulation study shows that the criterion performs well. However, the proposed criterion is applied to a real data
set to examine its applicability. The simulation results show the proficiency of algorithms in the presence of
outliers, non-normal distribution, and multicollinearity.

Keywords: linear regression, model selection, consistency, robustness, sequential algorithm

1. Introduction

The primary goal of regression analysis is to evolve a useful model to accurately predict the response
variable for the given values of predictors. Consider the following general multiple linear regression
model

y=XB+e, (1.1)

where y is n X 1 vector of observed values of the response variable, X is n X k full rank matrix of (k—1)
predictor variables with ones in the first column, and g is corresponding k X 1 vector of an unknown
regression coefficients. The € is n X 1 vector of independent errors, and has the same distribution
function F.

While developing the model, it is necessary to find out the unknown regression coefficients by
using the appropriate method. The eminent ordinary least squares (OLS) estimator is obtained by
minimizing the residual sum of squares. The OLS estimator is easy to compute and satisfies many
properties. Nevertheless, the OLS method is not resistant to inconvenient observations in y space
(known as outliers) and departs from the normality assumption of error in real data. The least ab-
solute deviation (LAD) furnishes a useful and plausible alternative, resistant estimator. The LAD
has many applications in Econometric and other studies. The resistant LAD estimator is obtained by
minimizing the sum of absolute residuals. Dielman (2005) presented a rich literature review on LAD
regression. LAD estimator has asymptotic N(3, 72(X' X)) distribution, T = 1/{2 f(m)}, and f(m) is
the probability density of error evaluated at the median. The 72/n is a variance of the sample median
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of error. It is assumed that F(0) = 1/2 and f(0) > 0. The LAD estimator is useful for the existence of
outliers and the non-normal error distribution problem.

Problems such as increase in complexity, prediction error, and economical aspects arise due to the
addition of irrelevant predictor variables in the regression model. Such problems can be handled by
a decisive aspect known as the model selection or variable selection procedure. Model selection has
recently attracted significant attention in statistical research. The selection of a less complex model is
essential. The model selection criteria are represented in the following form

Lack of Fit + Model Complexity.

Hence, the model selection can be done by trading off the lack of fit against model complexity. Many
model selection methods have been proposed in the literature to choose a parsimonious model in mul-
tiple linear regression. Rao ef al. (2001) given an extensive literature review on model selection.
Most methods are based on OLS such as Mallows’s C,, (Mallows, 1973). For zero bias, the expected
value of C), is p; therefore, Mallows’s C, selects the model for which C, close to p. The C,, plot is a
useful tool to graphically represent Mallows’s C,,. There are alternative graphical methods available
to select predictor variables. Siniksaran (2008) recently suggested an alternative plot with some ad-
vantages using a geometric approach. Gilmour (1995) modified Mallows’s C,, because the expected
value of Mallows’s C,, of a model which includes all relevant predictor variables is not equal to p
when the mean squared error (MSE) is used as an estimate of o->. Other methods like Akaike infor-
mation criterion (AIC) (Akaike, 1973) and Bayesian information criterion (BIC) (Schwarz, 1978), are
also available in the literature. Yamashita ez al. (2007) studied stepwise AIC as well as other stepwise
methods such as partial F, partial correlation and semi-partial correlation for variable selection in
multiple linear regression that showed certain advantages of stepwise AIC.

The above methods are based on OLS or likelihood and are vulnerable to outliers. Researchers
have proposed various robust variable selection methods to deal with outliers such as robust AIC
(RAIC) (Ronchetti, 1985), robust BIC (RBIC) (Machado, 1993), RC,, (Ronchetti and Staudte, 1994),
C,(d) (Kim and Hwang, 2000), S , (Kashid and Kulkarni, 2002), and Tharmaratnam and Claeskens
(2013) compared AIC based on different robust estimators. The model selection criteria Cp,, RC ,, C,(d)
and AIC are inconsistent; therefore, the probability of selection of only relevant predictor variables
is less than one for large sample size. Methods like BIC and GIC-LR are consistent model selec-
tion methods that select only relevant predictor variables with probability one for a large sample size
(Rao et al., 2001). The BIC and GIC-LR methods are based on likelihood function and ordinary
least squares (OLS) estimator respectively; however, these perform poorly in existence of outliers
or departures from the normality assumption. BIC or GIC-LR methods existing in the literature are
therefore consistent but not robust. To overcome this drawback, we have proposed a consistent and
robust model selection criterion based on LAD estimator.

The remaining article is organized as follows. In Section 2, we propose a new variable selection
criterion. We also studied its theoretical properties. In Section 3, the performance of the proposed
criterion is studied through simulation and real data. The algorithms for model selection are explained
in Section 4 with simulation and body fat real dataset. The article ends with some discussions of the
results in Section 5.

2. Proposed method
The model (1.1) can be rewritten as

y=X1ﬂ1+X2ﬁ2+8, (21)
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where X and §8 are partitioned so that X; is a matrix of (p — 1) predictor variables with ones in the
first column, and 31 is a p X 1 vector of associated regression coefficients including intercept. X, is a
matrix of (k— p) predictor variables, and 3; is a (k — p) X 1 vector of associated regression coeflicients.
Consider the test for regression coefficient with the null hypothesis Hy : 8, = 0. Under the null
hypothesis, the reduced model is

y= Xlﬁl + €. (22)

Consider y; and J, are the predicted values of y based on full model and reduced model respectively.
The predicted values are obtained using the LAD estimator of the respective models. We propose a
criterion based on these fitted values of y and model complexity. It is defined as

=91y —-31

% (1 + nlik-[:p)

The first term D, = [y — $1—y— jzf|'1]/[(‘r/2){1 + (k— p)/(n — k + p)}] represents the lack of fit
and is non-negative, 1 is the n-dimensional column vector of ones, and 7 is a scale parameter that
can be replaced by a suitable estimator based on a full model. The D, is a scaled likelihood test
statistic and scaled by the quantity (1 + (k — p)/(n — k + p)). This statistic is accurate for moderate
sample size as compared to likelihood test statistic (Birkes and Dodge, 1993). For n — oo, D,, and
likelihood test statistic are equivalent. Dp = 0 for the full model and is minimum among all possible
subsets; therefore, if we select a model that has a minimum Dp, then the full model is always selected.
Hence, the ‘minimum D)’ criterion does not select the parsimonious model which explain data with
few predictor variables and has better prediction ability. To make a consistent criterion, consider
the model complexity C,(p) is an increasing function of model dimension (p) that often depends
on sample size (n). Generally, the model dimension considered as the model complexity, but this
complexity measure does not make a consistent criterion. To overcome this problem, we consider
the function of the sample size and model dimension as a complexity measure. The model having
small complexity will be the best model as long as discrepancy measure (D)) is also small. The CR,
criterion selects the model which has a small CR,, value among all possible models. The established
theoretical results of the CR,, are given below:

Proposition 1. Under the null hypothesis Hy, E(CR,) = (k — p) + C,(p).

CR, +Colp). 23)

Proof: The proposed criterion is

=91y -1

T k=p )
2 (1 + n—k+p

CR, +Cu(p).

Under the null hypothesis, D, approximately follows x? distribution with k — p degree of freedom
(Birkes and Dodge, 1993). The expected value of CR,, is

E(CR,) = (k= p) + Cu(p).
Hence, the proof. O

Alternatively, for large n the proposed criterion can be written as

T A )
CRay, = 5 (Iv =51 =1y = 34(1) + Cu(p). (2.4)
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The performance of both criteria expressed in (2.3) and (2.4) will be same for large n. Consider, o'
be the subset of {1,2,...,k — 1}, and a° represents intercept. Let the selected model denoted by M,,
@ =a' Ua?, and o represents a set of all necessary predictor variables. The selected model belongs
to one of the following classes:

e Optimal Model: M, = M, = {M, : @ = ayp}
e Class of correct models: M. = {M,, : a 2 agp}
e Class of wrong models: M,, = {M,, : « 77_5 o}

Let CR,,. and CR,,.. denotes the values of criterion corresponding to any correct model M, € M,
and wrong model M, € M,, with dimension p,- and p,- respectively. The J. and J,, are vectors of
fitted values of the respective correct model and wrong model. Under mild conditions, the Theorem 1
exhibits the consistency property of the proposed criterion for fixed k.

Condition 1. For any M, € M. and My € M,, liminf (W - M) > 0.

n—oo n

It is expected that the average of absolute residuals of the wrong model is greater than any correct
model. Thus, the difference (|y — 9,/ 1/n—|y — 9| 1/n) is positive, large, and Condition 1 is reasonably
true.

Condition 2. C,(p) = o(n) and C,(p) — o0 asn — oo.

The Condition 2 is required to prove the following consistency property.

Theorem 1. (Consistency Property) Assume that above conditions are satisfied. Then
lim Pr(M, = M,) = 1.

Proof: From the definition of criterion,

=PI =9AT ==y =91

CR - CR + Cn(pa/**) - Cn(pa*)

Pa** Do — T poe P
% (1 + "*kf[’n** ) % (1 + n—kﬁ:p,ﬁ )
2 k = po- .y o\ 2k=-pa).
=—((1— b )|y—)’w|1—|y—yc|1)+—p|y—ycl1
T n ™
2(pa* = Pa) N
+ ™ |y - yf| 1+ Cn(poz**) - Cn(pa/*)
2 k— po- o .
=7 1- " y=wl L=1y =3l 1)+ & + & + Cu(par) — Culpar),  (2.5)
where
2(k = po+) ~a 2(par — Par) o
3 =T|y—)’c|1 and §2=—Tn ly=3/1

For any selected model M,,

V=91 = Iy = 'L < 1XB = XBI'L + [Xofa = XaBal 1+ |XB = Xofal'1. (2.6)
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Whenever, M, € M., X8 = X,[, and by consistency and asymptotic normality property (Dielman,
2005) we have |X,8, — Xofol'l = 0,(1), ly = 9I'1 = O,(1), Iy — 971"l = O,(1) and consequently,
&1 =& = o0,(1). Hence,

lim inf Pr(CRy,.. - CR,,. > 0)

n—oo

n—oo

2 k — po , ,
= hmll’lfPI'(; ((1 - rf)a )ly - yw| 1- |y - yc| 1) + Op(l) + Cn(pa**) - Cn(p(t*) > 0)

2 k= poe , ,
> Pr (lim inf = ((1 - T") by = 9wl 1=y = 5l 1) +0,(1) + 0,(n) > o)

n—oo T

=1. @2.7)

Now, to complete the proof, it is sufficient to show that CR), selects the optimal model with probability
one among the class of correct models. Consider D, and D, . are values of D, corresponding to the
optimal and correct model respectively. Under Condition 2, we have

lim Pr(M, = M,) = lim Pr(CR,, <CR,,.)

lim Pr (Dpa” -D,. < oo)

n—oo

= lim Pr (Xi”*_p% < oo)

=1 (2.8)
Hence, the CR), selects only all relevant predictor variables with probability one for large n. (]

2.1. Choice of T

The CR,, requires the estimation of an unknown scale parameter 7. Birkes and Dodge (1993) have the
given estimator 7| of 7, and recommended to use only non-zero residuals to improve the performance.
Dielman (2006) examined the performance of the likelihood ratio (LR) test, the Wald test and the
Lagrange multiplier (LM) test for the testing hypothesis regarding the regression coefficient in the
LAD regression. He considered four different estimators 5, 73, T4, and 75 of 7 for a comparative
study of these significance tests as well as showed that these types of estimators are performed well.
In this study, we considered the following five existing estimators of 7 to calculate CR,,.

\/m(r(k)—r(k )) m+1 (m+1 “
= +, kl = D - Vvm|, k2 = » 3 + vm|, and m = ;I(rﬁe()),
N (Fon—ty-1) = Ty)) [m+1 m | C
= k= —ze 2| m= S Ips), and @ = 0.05,
T 2 1 2 2 4| m ; (r#0), and «a
N (Font—1) — (m+1 ]
2 = M (Fn-k,-1) r(kl)), P L2 [m m—n and @ = 0.05,
Z% 2 2 4_
Nm (Fon-r,-1) — Fk, [m+ 1 -
b = (ron-x-1) — T ))’ |, /@] m= Iy and @ =0.05,
I | 2 TV4 i=1
</ meki—1) — [m+ 1
by = Y Uochon Zran) - mr L) nd @ = 0.05.
t% | 2 2 4
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Table 1: Penalty functions

Sr. No. Penalty function C,(p)
1 Py =2p
2 Py =3p
3 P3 =2plog(p)
4 Py = plog(n)
5 Ps = p(log(n) + 1)
6 Ps=pn
7 P7=p(Vn+2)

Here, r(y denotes ordered residuals of full model, and [-] denotes nearest positive integer. Only
nonzero residuals are considered to estimate 71, 75, and 74; however, all n residuals are considered
to estimate 73 and 7s5. An exhaustive simulation compares the performance of these estimators in the
next section.

3. Performance of CR,

In this section, an extensive simulation study checked the superiority of the proposed criterion. Also,
the real-life data analysis showed an applicability of the criterion.

3.1. Simulation study

In this simulation study, we considered seven different penalties (Table 1). The four penalties Ps—P
satisfy Condition 2, and remaining penalties are the functions of p only and do not satisfy Condition
2.

The independent predictor variables X;, j = 1,2, ..., (k— 1) and random errors are generated from
N(0, 1) distribution. The outliers are introduced artificially in the data by multiplying 20 to response
variable y corresponding to maximum absolute residuals. The simulation has been done for different
sample sizes n = 30, 50, 70, 100, 200 and two different models are described below:

e Model-L: g = (5,2,3,4,0,0)
e Model-II: 8 = (5,2,3,4,2,0,0)

In both these models, the response variable y is generated using (1.1). The performance of the
proposed method is studied in terms of the percentage of an optimal model selection. The percentage
of an optimal model selection in 1,000 runs are recorded in Table 2 and Table 3. It shows that CR,
performs well in cases of clean data as well as outliers; however, outliers drastically affect AIC and
BIC. RBIC performs uniformly better than RAIC. The performance of CR, criterion with P3—P;
over RBIC is remarkable. The penalties P3—P7 select an optimal model with a large percentage as
compared to other penalties. It is observed that 7, 7,, T4 performs better than 73 and 7s. Hence, the
consideration of only non-zero residuals to estimate 7 results in a good percentage for a small as well
as large sample size. 74 performs better compared to others for small sample sizes; however, 7, and
74 perform equally for large sample sizes. Thus, 74 performs well in cases of small as well as large
sample sizes. For further study, we consider ¥4 as an estimator of 7. CR,, criterion with all penalties
performs well as the sample size increases. The simulation study confirms the consistency property
of CR,, criterion for P4—P; penalties.
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Table 2: Percentage of optimal model selection (Model-I)
No. of CR,
Outliers P P, P P, Ps P P; AIC  BIC  RAIC  RBIC
7, 740 861 957 888 945 967 986
2, 871 950 988 964 983 992 995
0 #5669 786 904 81.8 882 918 957 646 840 547 92.0
4 918 976 995 980 994 994 988
#5653 777 895 811 871 91.0 953
7 657 794 930 830 905 949 932
2, 804 911 986 939 979 988 992
1 #3571 705 851 738 813 868 926 139 125 435 84.8
24 872 961 997 972 992 996 983
25 556 692 843 729 800 8.0 915
30 71 642 716 909 805 888 926 965
2 785 892 971 920 958 976 979
2 23 546 694 847 736 806 8.4 923 33 20 433 80.8
24 855 933 984 946 978 984 975
25 537 683 835 720 794 8.0 918
7 620 772 904 801 868 919 960
2 777 879 958 904 945  96.1 98.2
3 %2, 543 668 800 703 770 8.6 882 24 07 403 78.7
24 834 928 981 948 972 982  97.1
25 530 654 791 689 766 814 878
% 736 857 957 919 950 984 993
2 890 955 990 981 990 999 999
0 2 664 799 915 8.0 912 958 981 645 878 577 94.1
24 883 953 988 980 987 999 999
25 777 883 962 936 962 988 992
7. 689 837 937 895 936 932 994
% 859 944 992 978 990 997 999
1 2 629 769 900 857 898 947 975 236 228 571 90.8
24 853 941 991 978 99.0 996 999
25 745 853 951 91.1 949 986  99.3
50 7 686 809 931 881 929 074 99.0
%, 844 931 987 971 986 995 998
2 3 640 763 896 831 889 947 968 78 45 52.9 88.3
24 836 927 986 965 986 995 997
25 727 847 946 90.1 941 980 989
7, 677 809 923 868 922 97.1 98.8
2, 834 928 982 964 981 994 999
3 4 608 746 868 8.1 8.0 938 970 6.1 15 50.3 86.4
24 829 927 981 961 979 994 999
#5716 836 936 888 929 974 990
7, 741 859 961 948 965 987 995
2, 89.0 960 987 981 989 1000  100.0
0 23 788 908 965 954 969 992 998 657 907 623 95.3
%4 884 957 986 980 988 1000 100.0
25 779 903 964 954 967 992 998
7, 723 854 942 921 947 986 994
2, 882 940 985 974 987 999 999
1 #3777 887 958 940 961 994 997 366 334 611 93.9
24 879 936 982 974 986 999 999
#5770 881 954 940 958 994 997
70 7, 698 831 950 918 955 990 997
2, 844 948 987 979 993 1000  100.0
2 23 746 873 964 942 968 995 999 164 98 56.9 92.6
24 839 944 987 977 990 1000  100.0
25 743 867 960 940 967 995 998

Continued. ..



280 K. S. Shende, D. N. Kashid

No. of CR,
Outliers ' — P P, P; Pa Ps Pe P,
7 699 818 934 90.1 940 985  99.1
% 837 925 982 971 983 996  99.8
3 # 738 859 947 930 957 99.1 994 104 41 547 908
74 831 924 982 970 983 996  99.8
#5733 855 946 926 954 991 993
71 721 853 951 941 964 995 998
7 888 963 99.1 988 994 1000 100.0
0 #5788 892 969 964 974 997 1000 67.8 926 665 957
74 886 962 99.1 988 994 1000 100.0
#s 784 891 969 964 973 997  100.0
7 695 834 934 922 959 997 999
% 881 950 997 994 998 1000 100.0
1 # 757 877 961 951 978 997 999 47.1 439 626 942
74 879 946 997 994 997 1000  100.0
#s 754 875 959 949 975 997 999

AIC BIC RAIC RBIC

100 71 67.1 810 936 912 954 99.2 99.5
T, 859 950 985 981 99.0 99.9 100.0
2 73 744 864 961 951 969 99.3 99.7 306 178 58.2 933
T4 857 950 984 981 99.0 99.9 100.0
75 739 8.1 957 950 969 99.3 99.7
71 69.0 821 941 934 96.0 99.1 99.8
7 881 950 988 982 99.1 99.9 100.0
3 73 746 872 957 949 971 99.5 99.8 22.5 8.5 58.2 94.2
T4 877 950 988 982 99.1 99.9 100.0
75 745 870 956 947 969 99.5 99.8
T 697 833 940 946 97.1 100.0 100.0
T, 885 960 997 99.8 998 100.0 100.0
0 73 823 917 980 987 993 1000 100.0 67.0 94.6 66.0 97.0
Ty 884 959 997 997 99.8 100.0 100.0
75 819 917 980 986 993 100.0 100.0
71 709 834 953 959 975 100.0  100.0
7 903 966 993 997 998 100.0 100.0
1 73 822 927 982 986 994 100.0 100.0 654 729 66.5 975
T4 901 966 993 997 998 100.0 100.0
200 75 821 926 982 986 993 100.0 100.0

T 677 8L.1 937 944 970 99.9 100.0
7 873 956 993 993 997 100.0 100.0
2 73 80.0 903 983 985 989 100.0 100.0 629 544 67.5 96.4
T4 870 954 992 993 997 100.0 100.0
75 79.6 90.1 983 985 989 100.0 100.0
T 695 823 934 942 965 100.0 100.0
7, 868 953 995 996 999 100.0 100.0
3 3 812 913 979 983 993 100.0 1000 52.1 376 67.3 96.2
74 868 951 995 996 999 100.0  100.0
75 81.0 912 979 983 993 100.0 100.0

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

3.2. Real data (Hald cement data)

The performance of the proposed criterion is examined with real-life data. This section analyze a
Hald cement dataset (Ronchetti and Staudte, 1994). Hald cement data has 13 observations on the heat
evolved in calories per gram of cement (y) and four ingredients in the mixture: tricalcium aluminate
(X1), tricalcium silicate (X3), tetracalcium aluminoferrite (X3) and dicalcium silicate (Xy). Many
researchers have considered this data for model selection problem and suggested X, X, predictor
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Table 3: Percentage of optimal model selection (Model-II)
No. of CR,
Outliers P P, P P, Ps P P; AIC  BIC  RAIC  RBIC
7, 780 882 974 907 952 975 992
#5892 957 992 972 990 99.0  96.0
0 #3543 669 854 708 786 854 910 611 777 489 892
24 879 953 993 967 989 99.0  97.0
%5 526 653 844 689 717 845 907
7 715 818 952 862 921 955 970
2, 838 929 976 947 969 972 949
1 23 502 620 777 648 717 780 857 97 88 449 844
24 826 923 977 941 968 973 958
25 483 61.1 766 639 704 768 849
30 71 702 826 946 851 916 948 976
2 837 926 978 942 965 973 952
2 23 464 605 715 639 716 719 847 1.9 1.2 399 820
24 825 917 978 937 959 973 964
25 453 592 762 630 705 764 840
7. 650 799 936 839 903 935 975
2 803 912 974 937 963 972 944
3 23 435 569 741 602 689 743 83.1 1.0 02 398  76.6
24 786 90.0 973 927 961 969  94.8
25 421 558 733 589 675 733 82.4
7 748 882 970 931 963 988 997
2 865 940 993 970 987 998  99.9
0 2 620 739 880 808 849 930 961 660 877 579 937
24 902 964 995 987 994 1000  100.0
25 732 837 946 898 940 972 983
7, 727 846 956 906 944 979 991
2 826 921 982 957 979 992 998
1 3 577 699 871 799 82 924 951 187 160 53.6 885
24 876 948 990 975 987 997 999
25 697 812 943 886 925 964 979
50 7, 702 843 956 912 943 969 988
822 916 976 954 974 988 996
2 %3 556 682 869 716 846 921 944 50 32 51.6 888
24 872 941 989 969 983 997  100.0
25 674 814 926 8.1 919 956 978
7, 686 804 950 834 933 976 9389
2, 789 908 979 953 974  99.1 99.8
3 #3539 660 842 742 819 892 941 2.1 0.7 473 865
24 835 938 989 971 984 998  100.0
%5 656 768 92.1 840 900 965  98.1
7, 704 831 967 926 965 996 998
2, 878 960 997 99.0 997 1000  100.0
0 23 734 854 958 922 954 990 998 670 89.1 60.0 956
£, 872 958 997 988 997 999  100.0
25 728 852 954 919 952 99.0 998
7 701 8235 950 91.1 944 993 996
2, 868 950 995 984 992 1000  100.0
1 #3728 836 958 919 952 992 999 260 262 578 909
24 865 946 992 982 992 1000  100.0
#5721 832 954 917 950  99.1 99.9
70 7, 6381 818 949 910 947 990 996
2, 868 950 995 986 994 1000 100.0
2 23 684 837 956 918 954 987 993 94 52 53.1 92.1
24 861 945 995 984 994 1000  100.0
25 679 830 955 916 951 987 992

Continued. ..
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No. of CR),
Outliers T P P> P3 Py Ps Pg Py
7 66.7 80.7 935 895 93.1 98.1 99.1
P 845 937 984 974 98.4 99.9 100.0
3 73 70.1 824 937 89.7 93.1 98.4 98.9 4.6 0.8 55.1 89.9
74 840 929 984 974 98.3 99.9 100.0
75 69.7 820 935 895 92.8 98.3 98.9
7 719 836 964 941 96.6 99.8 99.8
T 857 947 994 989 99.5 100.0 100.0
0 73 733 847 958 941 96.2 99.6 99.8 68.2 93.1 63.7 95.3
T4 889 96.1 997 994 99.8 100.0 100.0
75 732 844 956 938 96.0 99.6 99.8
T 72.8 853 97.0 958 97.5 99.8 99.8
p) 889 963 997 99.2 99.7 99.9 100.0
1 73 755 873 975 955 97.7 99.5 99.9 384 377 62.7 95.7
74 903  97.1 99.7 995 99.8 100.0 100.0
75 752 870 97,5 955 97.6 99.5 99.9

AIC BIC RAIC RBIC

100 T 713 831 954 935 95.9 99.8 99.9
7 851 938 993 989 99.6 100.0  100.0
2 T3 724 848 960 939 96.5 99.5 99.7 188 11.1 63.6 94.5
T4 875 955 997 993 99.7 100.0  100.0
s 720 842 960 938 96.5 99.5 99.7
T 689 821 949 919 95.1 99.2 99.7
7, 841 936 985 979 98.8 99.9 99.9
3 73 703 828 949 921 95.4 99.3 99.6 11.3 3.5 59.6 922
T4 871 950 99.0 98.6 99.1 99.9 100.0
Ts 699 825 946 919 95.2 99.3 99.6
T 696 831 959 956 97.2 99.6 99.9
T, 885 962 993 992 99.3 100.0  100.0
0 T3 797 894 979 977 98.7 100.0 100.0 69.7 942 66.1 96.8
T4 884 961 993  99.1 99.3 100.0  100.0
s 795 892 979 976 98.7 100.0  100.0
T 721 859 967 96.6 97.9 99.9 99.9
T 916 969 996 99.6 99.8 100.0  100.0
1 73 813 916 984 983 98.7 100.0  100.0 604 594 67.8 97.3
T4 915 969 996 99.6 99.8 100.0  100.0
200 s 810 91.6 984 983 98.7 100.0  100.0

T 717 840 954 951 97.5 99.9 99.9
T 893 961 994 993 99.9 100.0  100.0
2 73 824 914 980 98.0 98.8 99.9 100.0 488 392 66.9 95.5
T4 892 960 993 993 99.9 100.0  100.0
s 823 913 980 979 98.7 99.9 100.0
T 723 844 966 96.2 97.9 100.0  100.0
T 902 969 999 998 100.0 100.0  100.0
3 73 802 907 982 98.1 99.4 1000 100.0 419 195 64.1 96.7
Ty 897 969 999 997 100.0 100.0  100.0
75 80.1 90.7 982  98.1 99.4 100.0  100.0

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

variables for Hald data. The 6™ observation has maximum absolute residual, to introduce an outlier
by replacing the 6" observation to 200 (Ronchetti and Staudte, 1994; Kashid and Kulkarni, 2002).
The values of CR,,, AIC, BIC, RAIC, and RBIC for all possible subsets are recorded for original and
outlier data in Tables 4 and 5. It is observed that the presence of outliers do not affect the value of
CR,. The CR,, criterion with all penalties selects X;, X, variables for clean data as well as outlier data.
The AIC criterion selects X, X, X4 variables in clean data, and selects X;, X4 variables in the case of



LAD estimator based consistent model selection in regression 283

Table 4: Hald Cement data (original)

I\SIZ. Submodel 2 7 2 C}i d Ps P 12 AIC BIC RAIC RBIC
1 X 22.3272 24.3272 21.0997 23.4571 25.4571 25.5383 29.5383 102.4119 104.1067 12.2956 7.1850
2 X 17.3189 19.3189 16.0915 18.4488 20.4488 20.5300 24.5300 98.0704 99.7652 16.0992 9.1288
3 X3 27.1334 29.1334 25.9060 28.2633 30.2633 30.3445 34.3445 107.9598 109.6547 10.8062 6.7160
4 X4 17.4910 19.4910 16.2636 18.6209 20.6209 20.7021 24.7021 97.7440 99.4389 12.4251 7.4164
5 X1.Xp 6.9781 9.9781 7.5698 8.6730 11.6730 11.7948 17.7948 64.3124 66.5722 15.5191 9.1283
6 X1,X3 26.1143 29.1143 26.7060 27.8091 30.8091 30.9309 36.9309 104.0091 106.2689 11.2779 7.7057
7 Xi1,X4 7.0266 10.0266 7.6183 8.7215 11.7215 11.8433 17.8433 67.6341 69.8939 12.1404 8.1164
8 X2,X3 14.2547 17.2547 14.8464 15.9496 18.9496 19.0714 25.0714 89.9295 92.1893 18.9980 10.7771
9 X5,X4 20.6127 23.6127 21.2043 22.3075 25.3075 25.4293 31.4293 99.5217 101.7815 16.9889 10.1520
10 X3,Xa 9.7554 12.7554 10.3470 11.4502 14.4502 14.5720 20.5720 78.7450 81.0048 29.2977 14.4117

11 X1,X2,X3 8.0552 12.0552 11.1455 10.3150 14.3150 14.4774 22.4774 63.9036 66.7283 15.3061 9.9429
12 X1,X2, X4 8.2061 12.2061 11.2965 10.4659 14.4659 14.6283 22.6283 63.8663 66.6910 14.5849 9.6446
13 X1,X3,X4 8.3405 12.3405 11.4308 10.6003 14.6003 14.7627 22.7627 64.6200 67.4447 11.8174 8.7352
14 X5,X3,X4 8.9205 12.9205 12.0109 11.1803 15.1803 15.3427 23.3427 69.4683 72.2930 18.9425 10.9302
15 Xy, X,X3,X4 10.0000 15.0000 16.0944 12.8247 17.8247 18.0278 28.0278 65.8367 69.2264 18.6140 11.9214

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

Table 5: Hald Cement data (with outlier, ys = 200)

NS; Submodel 2 2 P C;i L4 P: Pe 7 AIC BIC RAIC RBIC
1 X 22.3272 24.3272 21.0997 23.4571 25.4571 25.5383 29.5383 129.1893 130.8842 25.6844 14.0531
2 X 17.3189 19.3189 16.0915 18.4488 20.4488 20.5300 24.5300 129.1579 130.8527 48.6441 25.1826
3. X3 27.1334 29.1334 25.906 28.2633 30.2633 30.3445 34.3445 130.8619 132.5567 26.0959 14.0554
4 Xy 17.4910 19.4910 16.2636 18.6209 20.6209 20.7021 24.7021 128.9758 130.6706 35.3433 18.6954
5 X1,.Xo 6.9781 9.9781 7.5698 8.6730 11.6730 11.7948 17.7948 128.5246 130.7844 120.7875 61.7610
6 Xi1,X3 26.1143 29.1143 26.7060 27.8091 30.8091 30.9309 36.9309 131.0793 133.3391 28.2995 15.8754
7 X1,Xa 7.0266 10.0266 7.6183 8.7215 11.7215 11.8433 17.8433 128.4488 130.7086 95.9106 49.7983
8 X5,X3 14.2547 17.2547 14.8464 15.9496 18.9496 19.0714 25.0714 129.7412 132.0010 66.9138 34.7348
9 X0,X4 20.6127 23.6127 21.2043 22.3075 25.3075 25.4293 31.4293 130.9744 133.2342 48.8001 25.7217
10 X3,X4 9.7554 12.7554 10.3470 11.4502 14.4502 14.5720 20.5720 128.9457 131.2055 122.8992 61.2152

11 X1,X5,X3 8.0552 12.0552 11.1455 10.3150 14.3150 14.4774 22.4774 130.4785 133.3033 126.1412 65.3541
12 X1,X5,Xa 8.2061 12.2061 11.2965 10.4659 14.4659 14.6283 22.6283 130.4350 133.2597 121.2171 62.9619
13 X1,X3,X4 8.3405 12.3405 11.4308 10.6003 14.6003 14.7627 22.7627 130.4121 133.2369 103.8295 54.7412
14 X5,X3,Xa 8.9205 12.9205 12.0108 11.1803 15.1803 15.3427 23.3427 130.3519 133.1767 117.7132 60.3156
15 Xi,X5,X3,X4 10.0000 15.0000 16.0944 12.8247 17.8247 18.0278 28.0278 132.3519 135.7416 137.6374 71.4468

AIC = like Akaike information criteria; BIC = Bayesian information criteria; RAIC = robust AIC; RBIC = robust BIC.

an outlier. However, BIC selects X, X, variables in clean data, but in case of an outlier it selects only
X, variable. RAIC and RBIC select same variable X3 only in clean data, and X; only in presence of
an outlier.

The selection of a model from all possible subsets will become more complicated and time con-
suming as the number of predictor variables increase. For example, if K — 1 = 30 then it is necessary
to check more than a billion subsets for model selection. So, in this situation, it is reasonable to use a
kick-off (Rao and Wu, 1989) or stepwise approach.

4. Algorithms for model selection

The kick-off method is based on an OLS estimator that is not robust to outliers in the data. To
overcome this problem, we have modified the kick-off approach based on the LAD estimator for
variable selection. The CR), based kick-off method is explained below.
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1. Kick-off method

1) Calculate D_; = CR;_; — C,(k), where CR;_; is the value of criterion corresponding to predictor

variables excluding the i”* predictor variable and C, (k) penalty function of the full model.

2) If D_; < 0thenB; = 0,else 8; # 0,71 = 1,2,...,k — 1. Hence, select predictor variables for
which D_; > 0.

Alternative sequential and stepwise algorithms are described below. Let S € A = {1,2,3,...,k —
1} is an index set of selected predictor variables. The sum of absolute residuals for S = { } is
|y — Median(y)| 1.

2. Sequential method

1) Consider LAD estimator 3 of the full model, and using the statistical test explained by Birkes
and Dodge (1993, pp. 76-77) to test the null hypothesis, Ho : B3 |<Medianqz,)) = O- If the null
hypothesis is rejected at @% level of significance, then repeat Steps 3.1-3.3 until we get final
model. If null hypothesis is not rejected, then repeat Steps 2.1-2.3.

2) Forward direction:

2.1) Initially, consider S = { } null set.

2.2) Addanew j" € F = 8N A predictor variable to the previous set if j = arg max jer(CR,
(S) = CR,(SU{j}))and D; = CR,(S) — CR,(S U {j}) > O i.e., the difference CR,(S) —
CR,(S U {}}) is positive and large over all unselected predictor variables ().

2.3) Repeat Step 2.2 until no other variable is selected.
3) Backward direction:

3.1) Initially, consider S = A.

3.2) Delete I € S predictor variable if [ = arg max;es(CR,(S) — CR,(S - [)) and D; =
CR,(S) = CR,(S - 1) = Oi.e., CR,(S) — CR,(S - ]) is non-negative and large over all
selected predictor variables (S).

3.3) Repeat Step 3.2 until no other variable is deleted.
3. Stepwise method

1) Initially, consider S = { } null set.

2) Add anew ;" € F predictor variable to the previous set if j = arg max 7er(CR,(S) = CR,(SU
{//D)and D; = CR,(S) — CR,(S U {j}) > 0.

a) If any new predictor variable is not included in the null set S = {} or a singleton set, then
stop.
b) If |S] < 2, then repeat same Step 2, else go to the next step. |S| is a cardinality of set S.

3) Delete I € S predictor variable if [ = arg max; es(CR,(S) — CR,(S - ) and D, = CR,(S) -
CR,(S - 1) > 0 and go to Step 2.

4) Continue Step 2 and Step 3 until consequent S does not change.
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4.1. Addition and deletion criteria

Addition: The new j* € F predictor variable is added to the previous set S if D ; > 0 and maxi-
mum.

i.e., CR,(S) — CR,(S U {j}) > 0 and maximum

= ,—1((n —k+1S/)ly = 9l 1= (n =k +IS/+ 1)y —9SU,»|’1) + 2y = 941+ Co(1S) - Cu(IS + 1)
maximum

= Z(n—k+ISl)(ly = sl T = Iy = syl 1 = s5k7gly — P50l 1) maximum

= y1 = Y(ly - $s/'1 — Iy - 9l 1) maximum

Here, $s and $s,; are vectors of fitted values obtained from set of predictor variables corresponding
to sets S and S U j respectively. The y; follows F,_\s—» distribution (Birkes and Dodge, 1993);
therefore, select X; if ¢ is maximum and | > F 1 4|52

Deletion: We delete predictor variable X; from existing set S if 9; > 0 and maximum over all
selected predictor variables.

i.e., CR,(S) — CR,(S - ) maximum

& CR,(S-1)-CR,(S) <0 and minimum

= H((n=kH1SI= Dy =S 1= (n =k +1S)y = s 1) + 2= 3,11+ €S = 1) = C1S)
minimum

= Z(n=k+18I=1)(lv =95 1 =Iy = sl 1 = ;=g ly = s/ 1) minimum

& ¥ = (ly - sl 1 = Iy - $s/'1) minimum

The y, follows F ,_s-1 distribution (Birkes and Dodge,1993) and delete X; if ¢, is minimum and
U2 < Foin-S-1-

Alternatively, we can select X if ¢y > )(il and delete X; if y, < Xil for large n. Thus, the minimiza-
tion and distribution based addition and deletion rules are equivalent.

Corollary 1. The kick-off, sequential and stepwise algorithms select the optimal model with proba-
bility one for a large sample size.

Proof: The proof is given separately for kick-off algorithm and other two algorithms.

Kick-off method: If relevant predictor variable is deleted, then the reduced model belongs to M,,.
For the full model D, = 0, and the full model belongs to M.. By (2.7),

liminf Pr(D_; > 0) = 1 “.1)
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Similarly, if irrelevant predictor variable deleted, then the reduced model belongs to M.. By Con-
dition 2 and |y — $.|'1 = |y = 971’1 = O,(1),

lim inf Pr (D-; < 0) = lim inf Pr (CRii = Culk) < 0)
= ligg}fPr(Op(l) + Calk = 1) = Cy(k) < 0)
> Pr(liyrlr_l)glf O0p(1) + Colk = 1) = Cy(k) < 0)
-1 4.2)

Hence, the kick-off method selects only relevant predictor variables with probability one for large
n.

e Stepwise and sequential method:

o Addition: Consider r; € ¥ and r, € ¥ are indices corresponding to the relevant and irrelevant
predictor variable respectively. After adding r; in the present set S, the value of [y—3| 1 is smaller
than after adding 7, in a set S. It is equivalent to |y — jfsu[rz}fl > |y — 5’3u{m|/1 hold Vri,m € F.
Since, card(S U {r1}) = card(S U {r,}) = s1 (say)

CR,(SU{r)) — CR,(S U {r})

2 k—s . ’ . , 2k —s1). . ,
= -((1 - )|y—ysu<rz} 1 -1y = 9suml 1) +———Iy = Jsupml 1
T n ™m
2 k—S] N ’ R ’
=;(1— - )(ly—ySu[ml1—|y—y3u[r,1|1) 43)

and

liminf Pr (CR,(S U {r2}) > CR,(S U ()

n—oo

L2 k—s N ’ “ ’
> Pr(hrrflglf¥ (1 -, 1)(|y —y5u:rz}| 1- |y —YSu{r,1| 1) > 0)
=1.

= liminf Pr (CR,,(S) —CR,(SU{r}) > CR,)(S) - CR,(SU {rz})) =1. (4.4)

n—oo

o Deletion: Suppose r3 € S and r4y € S are indices corresponding to the relevant and irrelevant
predictor variable respectively. If we delete r3 and r4 from the present set S, then |y — 5)3_,3|/1 >
ly = $s-r,/ 1 hold Vr3, 74 € S.

Since, card(S — r3) = card(S — r4) = 5, (say)

k—Sz

n

2 : \ 20k - :
CRy(S = 13) = CRy(S = 14) = = ((1— )Iy—ys_nl 1|y =350 1)+% =S| 1

2 k- ’ ’
=2 (1522 (b= sseol 1= b =50l 1) (4.5)
T n
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Table 6: Performance of algorithms in presence of outliers

n % of Kick-off method Sequential method Stepwise method
(k/n)  outliers Py Ps Pg Py P, Ps Pg Py Py Ps P Py
0% 82,5 914 100.0 100.0 96.3 963 964 964 99.9 999 100.0 100.0
2% 68.8  80.8 99.7  100.0 944 946 946 946 99.8 100.0 100.0 100.0
200 4% 600 752 994  99.8 96.3  96.5 96.7  96.7 99.6  99.8 100.0 100.0
(1/2) 6% 56.8 712 988 99.3 947 957 96.0 959 98.7 99.7 1000 999
8% 577 722 994 999 93.8 939 940 937 99.8 99.9 1000  99.7
10% 584 73.1 984 979 940 944 942 929 99.6 1000 99.8 983
0% 854 937 100.0 100.0 98.8 993 99.6  99.6 99.2  99.7 100.0 100.0
2% 799 879 100.0 100.0 982 989 989 989 99.3 100.0 100.0 100.0
300 4% 75.0 86.5 100.0 100.0 972 982 988 988 984 994 100.0 100.0
(1/3) 6% 67.6 80.5 100.0 100.0 974 984 994 994 98.0  99.0 100.0 100.0
8% 659 793 99.9 100.0 97.6 99.1 99.6  99.6 98.0 99.5 100.0 100.0
10% 61.2 756 100.0 100.0 973 98,6 995 99.5 97.8 99.1 100.0 100.0
0% 90.2 956 100.0 100.0 984 992 998  99.8 98.6 994 100.0 100.0
2% 839 921 100.0 100.0 97.8 99.3 100.0 100.0 97.8 99.3 100.0 100.0
400 4% 79.1 89.7 100.0 100.0 97.0 992 999 999 97.1 99.3 100.0 100.0
(1/4) 6% 75.6 859 100.0 100.0 963 982 997  99.7 96.5 98.5 100.0 100.0
8% 70.1 832 100.0 100.0 97.0 982 997  99.7 972 985 100.0 100.0
10% 66.0 79.2 100.0 100.0 953 982 997  99.7 95.6 985 100.0 100.0
0% 937 97.6 100.0 100.0 98.5 994 100.0 100.0 98.5 99.4  100.0 100.0
2% 88.3 953 100.0 100.0 97.7 99.0 100.0 100.0 97.7 99.0 100.0 100.0
500 4% 88.3 943 100.0 100.0 98.0 994 100.0 100.0 98.0 994 100.0 100.0
(1/5) 6% 83.1 89.5 100.0 100.0 96.5 98.7 100.0 100.0 96.5 98.7 100.0 100.0
8% 77.6  88.3 100.0 100.0 96.0 99.2 100.0 100.0 96.0 99.2 100.0 100.0
10% 75.1 85.8 100.0 100.0 940 97.5 100.0 100.0 940 97,5 100.0 100.0

and

lim inf Pr(CR,(S = r3) > CR,(S = 1))

n—oo

> Pr(liminfz (1 - k_n”)(ly ~Ssr] 1=y =Fson| 1) > 0)

n—oco T
=1.
= liminf Pr(CR,(S) = CR,(S ~ r3) < CRy(S) = CR,(S — r4)) = 1. (4.6)

n—oo

o Stopping: By Theorem 1, if the present set S is an index set corresponding to optimal model then

lim Pr(CR,(S) - CR,(SU () <0) =1, Vr e,
o “.7)
lim Pr(CR,(S) - CR,(S=r3) <0) =1, Vr;eS.

By (4.4), (4.6), and (4.7), the procedure of addition of relevant predictor variable (rﬁh € ¥)and
deletion of irrelevant predictor variable (rf(‘ € S) continue until getting optimal model, and the algo-
rithms select the optimal model with probability one for large n. U

The CR,, AIC, BIC, RAIC, and RBIC criteria requires computing 2k=1 _ 1 criterion values to select
the optimal model; however, the kick-off method needs to check only k — 1 criterion values. In
the sequential method, we fix the forward or backward direction to minimize time by using step 1;

therefore, the sequential method requires 1 + Zf-:;ax(pn k—pa,—1) L criterion values, po, is an actual
0 @0
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Table 7: Performance of algorithms in presence of non-normal errors

n Distribution Kick-off method Sequential method Stepwise Method
(k/m) of error Py Ps Pg Py Py Ps P Py Py Ps Pg Py
N(0,3) 81.8 88.7 89.1 80.6 95.1 951 79.7 629 99.8 99.8 821 64.0

0.95N(0, 1) +0.05N(0,3) 81.0 91.0 100.0 100.0 95.8 958 958 958 999 999 999 999
09N(0,1) +0.1N(0,3) 824 90.2 999 999 96.8 97.0 97.0 969 99.8 100.0 100.0 99.9

(21(/)3) t 83.4 913 941 893 959 959 884 76.8 100.0 100.0 90.1 77.2
Slash 200 152 04 02 643 476 05 04 70.8 506 04 04

Cauchy (0, 1) 599 545 79 48 87.1 822 103 4.6 973 916 105 4.1

Laplace (0, 1) 824 91.0 99.8 995 96.8 96.8 96.7 964 100.0 100.0 999 99.1

N(0,3) 88.4 94.3 100.0 100.0 985 99.0 994 994 99.1 99.6 100.0 100.0

0.95N(0,1) + 0.05N(0,3) 86.4 92.4 100.0 100.0 98.8 994 999 999 98.9 99.5 100.0 100.0

300 09N, 1) +0.1N(0,3) 85.0 91.4 100.0 100.0 989 994 99.6 99.6 99.3  99.8 100.0 100.0
(1/3) 153 88.9 954 100.0 100.0 99.2 993 994 994 99.8  99.9 100.0 100.0
Slash 88.4 93.8 33.8 233 98.0 98.0 585 39.7 100.0 100.0 56.8 37.0

Cauchy (0, 1) 87.6 94.1 942 904 97.1 97.1 955 925 100.0 100.0 983 95.0

Laplace (0, 1) 89.7 95.5 100.0 100.0 994 996 998 99.8 99.6 99.8 100.0 100.0

N(,3) 91.5 96.5 100.0 100.0 98.7 992 999 999 98.8 99.3 100.0 100.0

0.95N(0, 1) + 0.05N(0,3) 90.3 95.6 100.0 100.0 98.9 99.8 100.0 100.0 98.9 99.8 100.0 100.0

400 09N(0,1) +0.1N(0,3) 90.4 95.2 100.0 100.0 98.8 99.7 999 999 98.9 99.8 100.0 100.0
(1/4) t 91.2 959 100.0 100.0 99.8 100.0 100.0 100.0 99.8 100.0 100.0 100.0
Slash 924 97.0 933 892 99.7 99.7 983 959 100.0 100.0 983 957

Cauchy (0, 1) 91.8 95.5 100.0 100.0 999 999 999 999 100.0 100.0 100.0 100.0

Laplace (0, 1) 92.5 96.4 100.0 100.0 99.6  99.8 100.0 100.0 99.6  99.8 100.0 100.0

N(0,3) 929 97.2 100.0 100.0 98.5 99.4 100.0 100.0 98.5 99.4 100.0 100.0

0.95N(0, 1) +0.05N(0,3) 92.8 97.1 100.0 100.0 98.3 99.4 100.0 100.0 98.3 99.4 100.0 100.0

500 09N(0,1) +0.1IN(0,3) 92.6 97.0 100.0 100.0 98.7 99.8 100.0 100.0 98.7 99.8 100.0 100.0
(1/5) t 93.4 97.4 100.0 100.0 99.6 99.9 100.0 100.0 99.6 99.9 100.0 100.0
Slash 953 982 99.7 994 99.7 99.8 999 999 99.8 99.9 100.0 100.0

Cauchy (0, 1) 939 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Laplace (0, 1) 93.3 97.2 100.0 100.0 99.6 99.8 100.0 100.0 99.6 99.8 100.0 100.0

number of relevant predictor variables. The stepwise method might be required more than sequential
algorithm steps, but not more than 2-! — 1. Hence, the stepwise method is more time-consuming
when compared to the other two algorithms.

4.2. Performance and scalability of algorithms

4.2.1. Simulation study

The performance of LAD estimator based algorithms are studied through simulation. The predictor
variables X, j = 1,2,...,k — 1 are generated from N(0,X). Here, X is a symmetric positive definite
matrix such that X; = 1,i = 1,2,...,k—1and Z;; = 0.25,7 # j = 1,2,...,k — 1. The errors are
generated from N(0, 1) distribution with the response variable generated using regression coefficients
B=0,2,...,2,0,...,0), where 5 is intercept, and only 10 regression coefficients are non-zero in 100
coefficients. Therefore, only 10% predictor variables are significant in the simulated data. Outliers are
introduced in the data by multiplying 20 to response variable y corresponding to maximum absolute
residuals. The simulation is carried out for different sample sizes n = 200, 300,400, 500, and the
simulation results are recorded in Tables 6-8. In each table, we record the percentage of the optimal
model selection in 1,000 runs considering only P4—P7 penalties. It is expected that the criterion selects
only the first 10 predictor variables.
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Table 8: Performance of algorithms in presence of multicollinearity

n oy Kick-off method Sequential method Stepwise method
(k/n) Y Py Ps P Py Py Ps Pg P7 Py Ps Pg Pq
0.00 8.1 902  99.8 100.0 99.7 999 951 87.6 99.8 100.0 949  87.6
0.50 80.5 89.0 999 999 878 879 819 879 99.9 100.0 100.0  99.8
0.55 805 90.5 100 99.6 870 873 8713 86.3 99.6 999 998  98.6
200 0.60 81.5 902 997 993 850 85.1 84.8 84 99.9 100.0  99.6  98.5
a2 0.65 80.8 902  99.1 97.9 842 842 841 82.5 999 999 996 974
070 798 887 977 937 81.7 81.8 805 76.6 99.8 999 985 926
0.75 81.7 904 898 802 81.7 819 756 672 99.7 100.0 915 787
0.80 80.5 89.6 714 57.5 763 764 61.7 474 99.8 99.9 75.9 55.7
090 61.0 545 6.0 2.7 71.9  66.3 4.0 1.6 93.3 83.2 2.6 0.8
0.00 858 948 100.0 100.0 99.1 99.7 100.0 100.0 99.1 99.7 100.0  100.0
0.50 862 928 999 100.0 97.3 98.1 982 982 99.1 99.9 100.0 100.0
0.55 86.0 91.7 100.0 100.0 9.4 969 970 970 99.4 999 100.0 100.0
300 0.60 86.6 938 100.0 100.0 96.2 968 969  96.9 99.2  99.8 100.0 100.0
1/3) 0.65 87.8 939 100.0 100.0 957 96.0 962 962 99.5 99.8 100.0 100.0
0.70 873 938 100.0 100.0 957 958 962 962 99.4  99.6 100.0 100.0
0.75 887 946 999 999 956 962 964 964 99.2  99.8 100.0 100.0
0.80 855 929 996  99.1 926 939 941 94.0 98.4 998 100.0 999
090 851 920 542 397 927 935 706  54.7 988 996 646  46.6
0.00 89.8 937 100.0 100.0 98.5 994 100.0 100.0 98.5 994 100.0 100.0
0.50 91.5 96.6 100.0 100.0 98.8 995 998 998 99.0  99.7 100.0 100.0
0.55 88.6 944 100.0 100.0 982 989 992 992 99.0  99.7 100.0 100.0
400 0.60 92.0 959 100.0 100.0 97.6 989  99.1 99.1 98.5 99.8 100.0 100.0
(1/4) 0.65 90.5 941 100.0 100.0 97.1 979 983 983 98.8  99.6 100.0 100.0
0.70 91.1 964 100.0 100.0 98.1 98.6  99.1 99.1 99.0  99.5 100.0 100.0
0.75 89.8 96.0 100.0 100.0 982 988 992 992 99.0  99.6 100.0 100.0
0.80 885 941 100.0 100.0 975 986 988 988 98.7  99.8 100.0 100.0
090 895 948 902 833 96.8 97.7 957 933 99.0 999 969  93.1
0.00 932 962 100.0 100.0 99.1 99.6 100.0 100.0 99.1 99.6  100.0  100.0
050 937 974 100.0 100.0 98.6  99.7 100.0 100.0 98.6  99.7 100.0 100.0
0.55 943 97.7 100.0 100.0 989 994 999 999 99.0  99.5 100.0 100.0
500 0.60 927 962 100.0 100.0 98.0 992 998  99.8 982 994 100.0 100.0

1/5) 0.65 93.1 96.7 100.0 100.0 984 994 99.6 99.6 98.8 99.8 100.0 100.0
070 946 97.7 100.0 100.0 99.0 99.7 100.0 100.0 99.0 99.7 100.0 100.0
075 926 96.6 100.0 100.0 98.1 99.2 99.5 99.5 98.6 99.7 100.0 100.0
0.80 929 962 100.0 100.0 983 99.1 99.4 99.4 98.9 99.7 100.0 100.0
090 93.0 972 98.7 97.8 979 99.1 99.3 99.0 98.5 99.7 99.9 99.5

The simulation is carried out for 2%, 4%, 6%, 8%, 10% contamination of outliers in the data,
and results are given in Table 6. The kick-off method performs poorly compared to sequential and
stepwise methods. It is observed that the stepwise method performs well compared to the sequential
method for the large k/n ratio; however, both methods perform equally for small k/n. The kick-off
method is also performs well for k/n = 1/5, and selects the optimal model with at least 75% accuracy.

The performance of the algorithms for non-normal error distribution has been studied using the
same model described above. We presented the simulation results (Table 7) with N(0, 3), 0.95N(0, 1)+
0.05N(0, 3), 0.9N(0, 1) + 0.1N(O0, 3), 1, Slash, Cauchy (0, 1), Laplace (0, 1) error distributions. The
sequential and stepwise method also performs reasonably well compared to the kick-off method in
this case. All these algorithms have low percentages of model selection for large k/n and Slash,
Cauchy distributions. However, the percentage of optimal model selection increases as the sample
size increases for Slash and Cauchy error distributions. It is observed that the performance of criterion
varies with a penalty function.
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Table 9: Selected predictor variables in the body fat data

Predictor Variables

Criteria Age Weight Height  Adiposity Fat Free Circumference measure (cm)
(yrs) (Ibs) (inches) index (kg/mz) Weight (Ibs) Neck Chest Abdomen Hip Thigh Knee Ankle Biceps Forearm Wrist
CRp Criterion
CRy, v v
ps v v
CRyg v v
p v v
AIC v v v v v v v v
BIC v v v v v ' '
RAIC v v ' v
RBIC v v v v
Kick-Off algorithm
KOy, v v
KOy v v
KOp, v v
Ko, v v
Sequential algorithm
Spy v v v
s v v v
S pg v v v
» v v v
Stepwise algorithm
STy, v v
s v v
STy v v
ST v v

We also checked proficiency of the algorithms in the presence of multicollinearity (Table 8). The
capability of these methods is assessed by varying cov(X;, X;) = X;; values. The high value of X;;
reveals severe multicollinearity. The percentage of the optimal model selection using algorithms
decays quickly for larger values of %;; and k/n. The algorithms select an optimal model with high
precision up to the moderate multicollinearity. However, algorithms select optimal model for small
k/n with high precision.

Thus, algorithms select an optimal model with a high percentage, and the performance mostly
depends on the ratio k/n. The sequential method is faster than stepwise and performs well compared
to the kick-off.

4.2.2. Body fat dataset

A body fat dataset is freely available in R software and contains physical measurements of 252 males.
Measuring body fat is difficult compared to measuring height and weight. The physical measurements
are more informative to get the percentage of body fat. The percentage of body fat is calculated
using Bronzek’s equation and density, and it is considered as the response variable. Another 15
variables mentioned in Table 9 are considered as predictor variables. It is observed that the data have
outliers and residuals do not follow a Normal distribution (Figure 1). Consequently, the non-resistant
model selection methods will not be appropriate for this dataset. The predictor variables selected by
the proposed criterion with different penalties (CR,), AIC, BIC, RAIC, RBIC, and other algorithms
(Kick-Off (KO,), Sequential (S ,), and Stepwise (S T,)) are indicated in Table 9. The CR,,, KO,,, ST,
selects only two predictor variables, weight and fat-free weight; however, a sequential method selects
one more predictor variable abdomen circumference. However, the AIC, BIC, RAIC, and RBIC select
different predictor variables. For a detailed study, we compared the prediction error of these methods.
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Figure 2: Box plot of root mean square prediction error.

The 70% (176) observations are randomly chosen to select the significant predictor variables and
the remaining 30% (76) observations are used to calculate prediction error using selected predictor
variables and their LAD estimator. The performance of the proposed criterion with different penalties
(CR,), AIC, BIC, RAIC, RBIC, and other algorithms (Kick-Off (KO),), Sequential (S ,), and Stepwise
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(ST,)) has been examined by the root mean square prediction error (RMSPE) = /ZZEI (yi = 9$:)2/76.
This procedure is repeated 1,000 times. In Figure 2, boxplots of RMSPE for different methods are
plotted. It is observed that CR,, criterion, sequential and stepwise methods have a small RMSPE
with low variation. However, the kick-off method with all penalties has a small RMSPE with a
small variation excluding P and P;. The RMSPE of the model selected by AIC and BIC is smaller
compared to RAIC and RBIC. The RMSPE of RAIC and RBIC indicate that both criteria do not
select a good model for this dataset. Thus, the real-life example reveals the scalability and stability of
algorithms.

5. Discussion

We have studied a robust model selection method for a class of different penalties. It is observed
that the criterion with the penalty satisfying Condition 2 performs well. It is shown that the model
selection criterion is consistent. The CR,, criterion is time consuming when the number of predictor
variables (k) increases. LAD estimator-based algorithms will be the best option to overcome this
problem. These algorithms work well for outlier data as well as the non-normality of the error term.
The time required to select an optimal model for these algorithms is less than searching all possible
subsets; consequently, the sequential method is preferable. Criterion based algorithms are therefore
shows to have advantages such as robustness, consistency and fast.
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