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Abstract
Many studies exist on the influence of one or few observations on estimators in a variety of statistical models

under the “large n, small p” setup; however, diagnostic issues in the regression models have been rarely studied in
a high dimensional setup. In the high dimensional data, the influence of observations is more serious because the
sample size n is significantly less than the number variables p. Here, we investigate the influence of observations
on the least absolute shrinkage and selection operator (LASSO) estimates, suggested by Tibshirani (Journal of the
Royal Statistical Society, Series B, 73, 273–282, 1996), and the influence of observations on selected variables
by the LASSO in the high dimensional setup. We also derived an analytic expression for the influence of the
k observation on LASSO estimates in simple linear regression. Numerical studies based on artificial data and
real data are done for illustration. Numerical results showed that the influence of observations on the LASSO
estimates and the selected variables by the LASSO in the high dimensional setup is more severe than that in the
usual “large n, small p” setup.

Keywords: high-dimension, influential observation, LASSO, outlier, regularization

1. Introduction

Much work has been done in regression diagnostics since Cook’s distance (Cook, 1977) was intro-
duced forty years ago. The concept of regression diagnostics, considered in the classical linear model,
has been extended to the Box-Cox transformation model (Box and Cox, 1964), ridge regression model
(Hoerl and Kennard, 1970), and nonparametric regression models such as spline smoothing model,
local polynomial regression, semiparametric model, and varying coefficient model. All regression
diagnostic results in various regression models are done under the assumption of “large n, small p”,
i.e., the number of unknown parameters which are estimated is less than the number of samples in the
data.

High-dimensional data (small n, large p) are very popular in the areas of information technology,
bioinformatics, astronomy, and finance. Classical statistical inferences such as the least squares esti-
mation in the linear model cannot be used in high-dimensional data. Recently, many methodological
and computational advances have allowed high-dimensional data to be efficiently analyzed; in addi-
tion, least absolute shrinkage and selection operator (LASSO), as introduced by Tibshirani (1996),
remains an important statistical tools for high-dimensional data.

In this paper, we study diagnostic issues in the LASSO regression model for high-dimensional
data. Kim et al. (2015) recently derived an approximate version of Cook’s distance in the LASSO
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regression; however, it is based on the “large n, small p” assumption. Cook’s distance in the LASSO
model suggested by Kim et al. (2015) cannot be directly used in high-dimensional data because the
covariance estimator of the LASSO estimator, which is necessary in defining a version of Cook’s dis-
tance, is not easily derived in the high-dimensional data. Further, under high dimensional setup, we
are more interested in influential observations on the variable selection rather than the influence on
estimators. Studies on the diagnostic measures for the LASSO model in the high-dimensional data
are relatively few. Among them, Zhao et al. (2013) proposed an influence measure for marginal cor-
relations between the response and all the predictors, and Jang and Anderson-Cook (2017) suggested
influence plots for LASSO. In this paper, we focus the influence of one or few observations on the
variable selection by the LASSO using the deletion method. The influence on the variable selection
in the classical model via the least squares was studied by Bae et al. (2017), and the selection of a
smoothing parameter in the robust LASSO was done by Kim and Lee (2017).

In high-dimensional data, the influence of one or few observations on some estimators could be
more serious and important because the number of observations is small compared to the “large n,
small p” setup. We investigate that a variable selection result based on the LASSO regression can be
significantly different if one or few observations are deleted. LASSO estimates often do not have a
analytic form; therefore, we assume the design matrix is orthogonal.

This paper is organized as follows. In Section 2, the difference between LASSO estimates based
on the full samples and the partial samples after deleting some observations, respectively, is derived
under simple setup of the design. Numerical studies based on artificial data sets are done in Section 3,
and an illustrative example based on a real data set is given in Section 4. Finally, concluding remarks
are given in Section 5.

2. Case influence diagnostics in LASSO

2.1. LASSO estimator based on partial samples

Consider a simple linear regression model with no intercept, i.e.,

yi = βxi + εi, i = 1, . . . , n, (2.1)

where
∑

xi = 0,
∑

x2
i = 1, and

∑
yi = 0. Then, it can be shown in Tibshirani (1996), for example, that

the LASSO estimator of β under model (2.1) is

β̂L(λ) = sgn
(
β̂
) (∣∣∣β̂∣∣∣ − λ)

+
,

where sgn(x) denotes the sign of x and β̂ =
∑

xiyi is the least squares estimator (LSE) of β. Now,
let K = {i1, i2, . . . , ik} be an index set of size k, and let β̂L(K)(λ) be a LASSO estimator of β based on
(n − k) observations after deleting k observations in K. Then, we have the following result.

Proposition 1. Under model (2.1),

β̂L(K)(λ) = sgn

β̂ −∑
i∈K

xiyi

 1 −∑
i∈K

x2
i

−1 
∣∣∣∣∣∣∣β̂ −∑

i∈K
xiyi

∣∣∣∣∣∣∣ − λ

+

.
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Proof: Note that β̂L(K)(λ) = arg minβ f (β), where f (β) = (1/2)
∑

j<K(y j − βx j)2 + λ|β|. Since

f (β) =
1
2

n∑
j=1

(
y j − βx j

)2 − 1
2

∑
i∈K

(yi − βxi)2 + λ|β|

=
1
2

n∑
j=1

(
y j − β̂x j

)2
+

1
2

(
β̂ − β

)2 − 1
2

∑
i∈K

(yi − βxi)2 + λ|β|.

Now, by the first derivative of f (β) with respect to β, we have

f ′(β) = −β̂ + β +
∑
i∈K

xi (yi − βxi) + λ · sgn(β).

Therefore, by noting x = sgn(x) |x|, we have

β̂ =

1 −∑
i∈K

x2
i

 β +∑
i∈K

xiyi + λ · sgn(β)

= sgn(β)|β|
1 −∑

i∈K
x2

i

 +∑
i∈K

xiyi + λ · sgn(β)

= sgn(β)


1 −∑

i∈K
x2

i

 |β| + λ
 +∑

i∈K
xiyi,

i.e.,

β̂ −
∑
i∈K

xiyi = sgn(β)


1 −∑

i∈K
x2

i

 |β| + λ
 . (2.2)

Since the second term of Equation (2.2) is positive, we must have sgn(β̂ −∑
i∈K xiyi) = sgn(β). Now,1 −∑

i∈K
x2

i

 β = β̂ −∑
i∈K

xiyi − λ · sgn(β)

= sgn

β̂ −∑
i∈K

xiyi


∣∣∣∣∣∣∣β̂ −∑

i∈K
xiyi

∣∣∣∣∣∣∣ − λ · sgn(β)

= sgn

β̂ −∑
i∈K

xiyi

 
∣∣∣∣∣∣∣β̂ −∑

i∈K
xiyi

∣∣∣∣∣∣∣ − λ


= sgn

β̂ −∑
i∈K

xiyi

 
∣∣∣∣∣∣∣β̂ −∑

i∈K
xiyi

∣∣∣∣∣∣∣ − λ

+

.

Therefore,

β̂L(K)(λ) = sgn

β̂ −∑
i∈K

xiyi

 1 −∑
i∈K

x2
i

−1 
∣∣∣∣∣∣∣β̂ −∑

i∈K
xiyi

∣∣∣∣∣∣∣ − λ

+
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which completes the proof. �

Remark 1. As a simple consequence of Proposition 1, the LASSO estimator based on (n − 1)
observations after deleting the ith observation is

β̂L(i)(λ) = sgn
(
β̂ − xiyi

) (
1 − x2

i

)−1 (∣∣∣β̂ − xiyi

∣∣∣ − λ)
+
.

2.2. Case influence in LASSO

Proposition 2. Without loss of generality, we assume that β̂ > 0. Then, β̂L(λ) = (β̂ − λ)+. Now, we
further assume that β̂ ≥ ∑

i∈K xiyi ≥ 0. Then, it is easy to show that

β̂L(K)(λ) =

∑
i<K

x2
i

−1 β̂L(λ) −
∑
i∈K

xiyi

 .
To see the relationship between β̂L(λ) and β̂L(K)(λ) in terms of λ (see Figure 1), we consider for the
single case deletion i.e., K = {i}. First, if λ ≥ β̂, then β̂L(λ) = β̂L(i)(λ) = 0. Second, if λ ≤ β̂− xiyi, then
β̂L(i)(λ) = (β̂L(λ) − xiyi)/

∑
j,i x2

j . Finally, if β̂ − xiyi < λ < β̂, then β̂L(λ) = β̂ − λ while β̂L(i)(λ) = 0,
i.e., if β̂ − xiyi < λ < β̂, then the deletion of the ith observation results in not selecting the covariate.
Therefore, if λ is chosen in this range, the ith observation is said to be influential on the feature
selection.

3. Numerical studies

3.1. Influence on coefficient estimates

Consider a simple linear regression model

yi = βxi + εi, i = 1, . . . , n,

where
∑

xi = 0,
∑

x2
i = 1, and

∑
yi = 0. We generate n = 20 random numbers by the following steps.

Step 1: Generate xi from N(0, 1)

Step 2: Generate εi from N(0, 0.12)

Step 3: Let Yi = 0.1xi + εi

Step 4: Do centering and scaling to meet
∑

xi = 0,
∑

x2
i = 1, and

∑
yi = 0.

The LSE based on the artificial data is β̂ = 0.346. When the 20th observation is deleted, β̂−x20y20 =

0.179. Therefore, if 0.179 < λ < 0.346, β̂L(λ) = 0.346 − λ; however, β̂L(20)(λ) = 0.

3.2. Influence on variable selections

In this numerical study, we investigate three important aspects of the influence of the ith observation
on the variable selection in the “small n, large p” setup. First, we want to see that the number of
selected variables via the LASSO is very sensitive to the deletion of one observation. The number
of selected variables has very important implication in the sense of the prediction and the estimation
of the degrees of freedom. Second, we want to see the variable selection performance of the LASSO
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Figure 1: β̂L(λ) and β̂L(20)(λ) in terms of λ.

in the outlier model (a model with one outlying observation) when the tuning parameter is given so
that the LASSO selects the true number of variables. Third, we want to see how correctly the LASSO
selects variables in the outlier model when the tuning parameter is estimated by the cross-validation.
To do this, we generate random numbers from the model given as follows.

Consider a linear regression model

yi = x′iβ + εi, i = 1, . . . , n,

where β = (5, 5, 5, 5, 0, . . . , 0)t is a 100-dimensional vector. We generate n = 20 random numbers by
the following steps.

Step 1: Generate each X j, j = 1, . . . , 100 from N(5, 1).

Step 2: Generate εi from N(0, 0.12).

Step 3: Let Yi = x′iβ + εi.

• Simulation (I) - Sensitivity of LASSO to a single observation

In this simulation study, we want to see that the number of selected variables via the LASSO is very
sensitive to the deletion of one observation. Table 1 shows the LASSO estimators based on the full
samples (i.e., n = 20) selected variables 1, 2, 3, and 4, which are true nonzero variables. However,
the LASSO estimators based on 19 observations after deleting the ith (i = 1, 2, . . . , 20) observation
show different selection results. For example, if we delete the 2nd observation, the LASSO selected
10 variables; in addition, the LASSO selected just one variable if we deleted the 16th observation.

• Simulation (II) - Sensitivity of LASSO to a single outlier (λ : given)

Here, we want to see the variable selection performance of the LASSO in the outlier model (a model
with one outlying observation) when the tuning parameter is given so that the LASSO selects the
4 variables, i.e., true number of variables. We considered three outlier models, where each model
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Table 1: Selected variables by the LASSO with the full data set (n = 20) and 19 observations after deleting one
observation, respectively, based on the artificial data

Deleted observation Selected variables Number of selected variables
Original data 1 2 3 4 4

1 1 2 3 4 52 96 6
2 1 2 3 4 10 22 42 48 68 99 10
3 1 2 3 4 48 62 6
4 1 2 3 4 4
5 1 2 3 4 4
6 1 2 3 4 76 5
7 1 2 3 4 4
8 1 2 3 4 10 5
9 1 2 3 4 4
10 1 2 3 4 10 42 6
11 1 2 3 4 48 5
12 1 2 3 4 48 5
13 1 2 3 4 36 48 6
14 1 2 3 4 10 46 48 66 96 9
15 1 2 3 4 36 5
16 4 1
17 1 2 3 4 4
18 1 2 3 4 36 48 62 76 8
19 1 2 3 4 48 5
20 1 2 3 4 4

Table 2: The average proportion of the number of correctly selected variables among 4 variables selected by the
LASSO out of 100 replications

Deleted observation y1 + 10 y1 + 30 y1 + 50
None 0.294 0.186 0.120

1 0.512 0.492 0.441
2 0.296 0.168 0.112
3 0.284 0.155 0.109
4 0.272 0.173 0.108
5 0.283 0.170 0.104
6 0.304 0.174 0.097
7 0.274 0.171 0.104
8 0.283 0.177 0.109
9 0.292 0.157 0.109
10 0.295 0.171 0.102
11 0.280 0.148 0.102
12 0.299 0.170 0.095
13 0.274 0.172 0.104
14 0.283 0.165 0.104
15 0.290 0.181 0.093
16 0.296 0.189 0.100
17 0.281 0.160 0.096
18 0.287 0.172 0.104
19 0.290 0.171 0.093
20 0.291 0.185 0.110

Three outlier models with y1 + c, c = 10, 30, 50 are considered.

contains outlier with y1 + c, c = 10, 30, 50. Table 2 shows the average proportion of the number
of correctly selected variables among 4 variables selected by the LASSO out of 100 replications.
Table 2 also shows the shows that the proportion of selecting a true model is about 0.5 when we
delete the 1st observation (outlier); however, the proportion is less than 0.3 either when we use the
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Table 3: The average proportion of the number of correctly selected variables by the LASSO out of 100
replications when the tuning parameter is estimated by the cross-validation

Deleted observation y1 + 10 y1 + 30 y1 + 50
None 0.490 0.350 0.220

1 0.550 0.505 0.530
2 0.480 0.280 0.210
3 0.475 0.330 0.200
4 0.465 0.330 0.225
5 0.450 0.310 0.230
6 0.480 0.295 0.215
7 0.480 0.325 0.220
8 0.465 0.320 0.200
9 0.455 0.325 0.190
10 0.485 0.300 0.225
11 0.470 0.295 0.215
12 0.465 0.300 0.235
13 0.450 0.300 0.210
14 0.475 0.310 0.195
15 0.450 0.275 0.240
16 0.490 0.315 0.190
17 0.480 0.305 0.235
18 0.460 0.310 0.210
19 0.445 0.305 0.235
20 0.480 0.305 0.215

If the number of selected variables less than four, we assumed that 4 variables are selected by the LASSO.
Three outlier models with y1 + c, c = 10, 30, 50 are considered.

full data or when we delete the other observation than the outlier.

• Simulation (III) - Sensitivity of LASSO to a single outlier (λ : estimated)

Finally, we want to see the variable selection performance of the LASSO in the outlier model when
the tuning parameter is estimated by the cross-validation, for example. To do this we compute the
average proportion of the number of the selected variables by LASSO out of 100 replications. If
the number of selected variables less than four, we assumed that 4 variables are selected by the
LASSO. Table 3 shows the average proportion of the number of correctly selected variables. We
considered three outlier models, where each model contains an outlier with y1 + c, c = 10, 30, 50.
Table 3 also indicates the proportion of selecting true model is above 0.5 when we delete the 1st
observation (outlier), but the proportion is less than 0.5 either when we use the full data or when
we delete other observation than the outlier.

Remark 2. Even though the formula for the multiple cases deletion was given in Proposition 1, the
simulation study was done for a single case deletion only. Due to different aspects of multiple cases
deletion (swamping phenomenon and masking effect), further simulation studies for multiple cases
deletion would be helpful.

4. Example

As an illustrative example for the influence of observations on the variable selection in LASSO, we
use the brain aging data of Lu et al. (2004). This data set contains measurements of p = 403 genes
and n = 30 human brain samples, and the response is the age of each human. We fit this data set by
the LASSO based on the original sample (n = 30), and fit based on n = 29 observations after deleting
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the ith (i = 1, . . . , 30) observation to see the influence of the ith observation on the variable selection
by the LASSO.

Table 4 shows that the LASSO selects 25 variables among 403 variables. If we delete one obser-
vation, then most cases result in selecting around 25 variables except the cases of deleting the 8th, 9th,
and 19th observation, respectively. We may conclude that those three observations are quite influential
as far as the number of variable selection is concerned.

5. Concluding remarks

One or few observations could be very influential on estimators in “small p, large n” case, and this
phenomenon becomes more serious in “small n, large p” case. In this paper, we investigate the
influence of observations on the LASSO estimates and the selected variables by the LASSO. Also,
we derived analytic expression for the influence of the ith observation on the LASSO estimates in the
simple linear regression. Simulation results show that the influence of an outlier is more serious in the
high dimensional case than in the low dimensional case.

For further studies, it will be worth studying the basic building blocks which affect variable selec-
tion results. Despite difficulties, it is also necessary to modify the LASSO model to a robust LASSO
that is not sensitive to outliers.
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