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Abstract
We consider a wide class of general weakly-dependent processes, called ψ-weak dependence, which unify

almost all weak dependence structures of interest found in statistics under natural conditions on process param-
eters, such as mixing, association, Bernoulli shifts, and Markovian sequences. For detecting the tail behavior of
the weakly dependent processes, change point tests are developed by means of cumulative sum (CUSUM) statis-
tics with the empirical distribution functions of sample extremes. The null limiting distribution is established
as a Brownian bridge. Its proof is based on the ψ-weak dependence structure and the existence of the phantom
distribution function of stationary weakly-dependent processes. A Monte-Carlo study is conducted to see the
performance of sizes and powers of the CUSUM tests in GARCH(1, 1) models; in addition, real data applications
are given with log-returns of financial data such as the Korean stock price index.
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1. Introduction

There are extreme outliers of the real data found in many financial markets and telecommunication
networks that play a key role to provide future forecasts and optimal services. Extremal events such
as high flood levels of rivers or extremal values of environmental indicators are also often more infor-
mative than central parts. Statistical inference on the tail of a distribution has been one of the most
important issues for extreme value analysis. The tail index of a time series, which is used as a measure
of the thickness of the tail, gives more information than other volatility measures such as variance.
For example, it determines the existence of higher-order moments and the limit distribution of sample
maximum and minimum.

There is empirical evidence that the tail behavior of real data has changed at some point during
the observation period, as mentioned by Hoga (2017), who discussed change point tests for the tail
index of β-mixing random variables. Concerning the change point tests on the tail index, we refer to
Quintos et al. (2001), Jureckova and Picek (2001), Jureckova et al. (2009), Kim and Lee (2009, 2011,
2012, 2016), and Hoga (2017). Quintos et al. (2001) explored the tests of tail shape constancy in
the 1997 Asian financial crisis. Jureckova and Picek (2001) and Kim and Lee (2009) proposed tests
for Pareto-type tails, Jureckova et al. (2009) and Kim and Lee (2012) dealt with tests for tail index
in autoregressive models, while Kim and Lee (2011) extended change point tests to a large class of
dependent sequences and Kim and Lee (2016) to GARCH types. The change point tests by Quin-
tos et al. (2001), Kim and Lee (2009, 2012, 2016) and Hoga (2017) were developed by means of
1 Corresponding author: Department of Applied Statistics, Gachon University, 1342 Seongnamdaero, Sujeong-gu,

Seongnam-si, Gyeonggi-do 13120, South Korea. E-mail: ehwang@gachon.ac.kr

Published 31 March 2020 / journal homepage: http://csam.or.kr
c⃝ 2020 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



164 JunHyeong Kim, Eunju Hwang

Hill’s (1975) estimator; however, Jureckova and Picek (2001) and Jureckova et al. (2009) employed
empirical processes along with some threshold sequences. Hill’s estimator has been extensively dis-
cussed and modified by many authors in various time series models. Jureckova’s approach also has a
powerful performance as seen in the numerical illustration of Jureckova and Picek (2001), who have
proposed a class of nonparametric tests on the tail index for independent and identically distributed
(iid) random variables. The proposed tests adequately well the tails even for moderate samples.

We adopt the idea of Jureckova and Picek (2001), rather than Hill’s estimate approach, and pro-
pose a simpler test for the tail change in weakly-dependent processes. We consider a wide class of
general weakly-dependent time series sequences, called ψ-weak dependence, introduced by Doukhan
and Louhichi (1999) to unify almost all weak dependence conditions such as mixing, associations,
Gaussian sequences and Bernoulli shifts. The ψ-weakly dependent processes, including all classes
of weakly dependent stationary processes of interest in statistics under natural conditions on the pro-
cess parameters have been actively studied by many researchers: Coulon-Prieur and Doukhan (2000)
for a central limit theorem under the weak dependence condition, Doukhan and Louhichi (2001) for
functional estimation of the density, Ango Nze et al. (2002) for nonparametric regression estima-
tion with the weak dependence, Ango Nze and Doukhan (2004) for the weakly dependent time series
models and applications to econometrics, Doukhan and Neumann (2007), Hwang and Shin (2013)
and Doukhan et al. (2015) for probabilistic results of the processes such as moment inequalities and
distribution functions. Also see Hwang and Shin (2011, 2012a, 2012b, 2016a, 2016b) and references.

In the ψ-weakly dependent processes, we discuss the change point tests for the tail index, applying
cumulative sum (CUSUM) statistics based on the empirical process and threshold sequence. CUSUM
test statistics are constructed using empirical distribution functions with sample extremes by splitting
a the set of observations into N subsamples of size n where nN is the sample size. A key idea
of the CUSUM tests is that some suitable threshold sequence can be selected so that the empirical
distribution functions at the threshold values are neither zero nor one a.s. The threshold sequence
is adopted as in Jureckova and Picek (2001), who proposed nonparametric tests (but not CUSUM
tests) on the tail index for iid random variables. The reason why the threshold of the same form
can be chosen in our case is explained with the existence of the phantom distribution function of the
weakly dependent processes. The notion of the phantom distribution function has been introduced
by O’Brien (1987) and investigated by Doukhan et al. (2015) along with sufficient conditions on
its existence in stationary and ψ-weakly dependent processes. The null limiting distribution of the
CUSUM test statistics as both N → ∞ and n → ∞ is established to be a Brownian bridge. The
proof is addressed by the weak dependence structure and the existence of the phantom distribution
function of the stationary processes under the null hypothesis. This present work makes it possible to
extend Jureckova and Picek (2001) of the iid case to general weakly-dependent time series models. A
Monte-Carlo study is conducted to see the performance of powers and sizes of the CUSUM tests in
GARCH(1, 1) models with heavy-tailed noises when tail indices of the noises are changed. Real data
applications are given with the financial data of Korean stock price index.

The remainder of the paper is organized as follows. Section 2 presents the weak dependence and
main results and Section 3 deals with GARCH(1, 1) processes. In Section 4, a Monte Carlo study and
real data analysis are conducted. In Section 5 a concluding remark is stated while in Section 6 a proof
is given along with the existing proposition.

2. Main result

We consider stationary and weakly dependent sequences of a time series satisfying weak dependence
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conditions in the following, proposed by Doukhan and Louhichi (1999) to unify all classes of times
series under natural conditions on parameters. The following is summarized in the same way as in
Doukhan et al. (2015).

For k ∈ N, let Mk be the family of all bounded measurable non-constant functions f on Rk

satisfying

sup
(x1,x2,...,xk)∈Rk

| f (x1, x2, . . . , xk)| ≤ 1.

Define the Lipschitz coefficients onMk ∋ f 7→ Lip f ∈ R+ ∪ {+∞} as

Lip f = sup
(y1,...,yk),(x1,...,xk)

| f (y1, . . . , yk) − f (x1, . . . , xk)|
|y1 − x1| + · · · + |yk − xk |

.

We also setM = ∪k∈NMk. According to Doukhan and Louhichi (1999) and Dedecker et al. (2007),
a time series {Xt} is said to be (ϵ,M, ψ)-weakly dependent, (or simply ψ-weakly dependent), if there
exists a mapping

ψϵ :M×M→ R+

such that

ϵ(r) = sup

∣∣∣∣Cov
(

f (Xi1 , . . . , Xik ), g(X j1 , . . . , X jℓ )
)∣∣∣∣

ψϵ( f , g)
−→ 0 as r → ∞, (2.1)

where the supremum is taken over all pairs of functions f ∈ Mk, g ∈ Mℓ and sets of indices

i1 ≤ i2 ≤ · · · ≤ ik ≤ j1 ≤ j2 ≤ · · · ≤ jℓ

with a gap of size r; j1−ik ≥ r. By selecting a mapping ψϵ we obtain the following various coefficients
of dependence:

ψα( f , g) = 4, ϵ(r) = α(r) (α −mixing)
ψθ( f , g) = ℓLip g, ϵ(r) = θ(r) (θ − dependence)
ψη( f , g) = kLip f + ℓLip g, ϵ(r) = η(r) (η − dependence)
ψκ( f , g) = kℓLip f · Lip g, ϵ(r) = κ(r) (κ − dependence)
ψλ( f , g) = kLip f + ℓLip g + kℓLip f · Lip g, ϵ(r) = λ(r) (λ − dependence).

(2.2)

In this work we are interested in change of tail behavior of a stationary weakly dependent process
{Xt} satisfying (2.1) and (2.2). Let F(x) = P(X1 ≤ x) be the marginal distribution function of the
stationary process {Xt}. Suppose that the cumulative distribution function (cdf) F has tail index m
with satisfying

lim
x→∞

− log(1 − F(x))
m log x

= 1, (2.3)

for some m > 0. An exponentially tailed distribution F corresponds to m = ∞. For 0 < m < ∞,
F is heavy-tailed or Pareto type. We adopt the idea of Jureckova and Picek (2001), instead of Hill’s
estimate approach, and propose a simpler test for the change on the tail index. Let m0 be a threshold
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tail index of interest in hypothesis. We wish to test. If the tail index m remains in the same interval
(0,m0] for the whole observations. The null hypothesis is H0(= Hm0 ) : “no change in the tail behavior
of the stationary weakly dependent process with tail index m ∈ (0,m0], i.e., xm0 (1 − F(x)) ≥ 1 for
sufficiently large x”. Under the null hypothesis H0, assuming that {Xt} is stationary, F satisfies (2.3)
with unchanged tail index m, vs. under the alternative hypothesis HA, the tail index m of F changes
from a value in (0,m0] to one in (m0,∞) with lim supx→∞ xm0 (1 − F(x)) < 1.

In order to construct the test statistics, we apply the empirical distribution functions of the ex-
tremes, based on splitting the set of observations into N subsamples of size n, described as in Jureck-
ova and Picek (2001). Suppose that X1, X2, . . . , XN̄ are observed with sample size N̄ = nN so that
these observations are divided into N groups of each size n. We assume that n → ∞, N → ∞ and
n = o(N) as N̄ → ∞. For example, we set n = [log N̄] and N = [N̄/ log N̄] where [x] is the integer part
of x. For s = 1, 2, . . . ,N, the s-th group consists of {X(s−1)n+1, . . . , Xsn}, and its maximum is denoted
by X(n),s: X(n),s = max{X(s−1)n+i : 1 ≤ i ≤ n}. The empirical distribution function F̂N,n of the sample
maxima {X(n),s : s = 1, 2, . . . ,N} is given by

F̂N,n(x) =
1
N

N∑
s=1

I(X(n),s ≤ x), (2.4)

where I(·) is the indicator function. For the test statistics we choose a threshold sequence a = aN̄,m0
,

depending on the sample size and the hypothesis index m0. For the case of iid random variables,
Jureckova and Picek (2001) have selected a := (nN1−δ)1/m0 for 0 < δ < 2/3 as the threshold sequence
so that P(Xmin > a)→ 0 and P(Xmax < a)→ 0 as N̄ → ∞ and thus

lim
N̄→∞

P
(
0 < F̂N,n(a) < 1

)
= 1. (2.5)

Here Xmin = min{Xt : 1 ≤ t ≤ nN} and Xmax = max{Xt : 1 ≤ t ≤ nN}. In this work of weakly
dependent time series case, we choose the same sequence a := (nN1−δ)1/m0 . The reason will be
explained in Remark 1 below, which is due to the existence of the phantom distribution function of
the stationary weakly dependent processes (see also Proposition 1 in Section 6).

A class of CUSUM test statistics {T̂N(·) ≡ T̂N,m0 (·) : m0 > 0} is constructed based on the empirical
distribution functions as follows: For 0 ≤ z ≤ 1 and a = (nN1−δ)1/m0 for some 0 < δ < 2/3, let

T̂N(z) =
1
√

N

[Nz]∑
s=1

I
(
X(n),s ≤ a

) − z
√

N

N∑
s=1

I
(
X(n),s ≤ a

)
.

We will reject the null hypothesis H0 if sup0≤z≤1 |T̂N(z)| is large. Some simulated results for the statistic
sup0≤z≤1 |T̂N(z)| are given for GARCH(1, 1) models with two changed noises on Table 1 in Section 4.
GARCH(1, 1) processes are discussed in the next section. Note that our class of tests can be used for
the null hypothesis H′0 that tail index m ∈ [m0,∞) is unchanged with xm0 (1 − F(x)) ≤ 1 for large x,
vs. the alternative hypothesis H′A that there exists tail change from m ∈ [m0,∞) to m ∈ (0,m0) with
lim supx→∞ xm0 (1 − F(x)) > 1, because the statistics account for the supremum of the absolute value
over 0 ≤ z ≤ 1.

A functional central limit theorem (FCLT) establishes the convergence in distribution:

T̂N(z)
d−→ σ(B(z) − zB(1)) ≡ σB0(z) as N → ∞,
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where {B0(z) := B(z) − zB(1), 0 ≤ z ≤ 1} is the Brownian bridge with the standard Brownian motion
B(·) and

σ2 = lim
N→∞

Var

 1
√

N

N∑
s=1

I(X(n),s ≤ a)

 . (2.6)

We may use σ̂2
N,q as an estimator of σ2 which is defined by

σ̂2
N,q =

1
N

N∑
s=1

(
I(X(n),s ≤ a) − F̂N,n(a)

)2
+ 2

q∑
s=1

ωs,qγ̂N,s(a), q < N, (2.7)

where ωs,q = 1 − s/(q + 1) and autocovariance estimator

γ̂N,s(a) =
1
N

N−s∑
i=1

(
I(X(n),i ≤ a) − F̂N,n(a)

) (
I
(
X(n),i+s ≤ a

) − F̂N,n(a)
)

for 0 ≤ s ≤ N (Lo, 1991, Equation (3.6)). Define the CUSUM test statistic B̂N(z) by

B̂N(z) :=
1

σ̂N,q
T̂N(z).

Our main result for the asymptotic of B̂N(z) is stated in Theorem 1, for which we make the fol-
lowing assumptions under the null hypothesis:

(A1) {Xt} is stationary and satisfies the weakly dependent conditions in (2.1) and (2.2).

(A2) {Xt} has continuous marginals satisfying

P(X1 ∈ (x, x + u]) = F(x + u) − F(x) ≤ cub, x ∈ R, u > 0, (2.8)

for some b > 0 and c > 0.

The concentration assumption in (A2) is not restrictive as mentioned by Doukhan et al. (2015)
(see Section 4.3). By their Theorems 7–9, under conditions (A1)–(A2), {Xt} admits a continuous
phantom distribution function, that is, there exists G(·) such that

P
(
max
1≤t≤n

Xt ≤ un

)
−Gn(un)→ 0

as n→ ∞ for every sequence {un} ⊂ R. Thanks to the existence of the phantom distribution function,
the threshold sequence a = (nN1−δ)1/m0 satisfying (2.5) can be selected as well as the following
theorem is valid. More details on significant roles of the phantom distribution function are explored
in Remark 1.

Theorem 1. We assume (A1) and (A2). Under the null hypothesis H0, if the weak dependent coeffi-
cient in (2.1) and (2.2) has order ϵ(r) = O(r−β) for some β > 0, then we have, as N → ∞ and n→ ∞
with n = o(N),

sup
0≤z≤1

∣∣∣B̂N(z)
∣∣∣ d−→ sup

0≤z≤1
|B0(z)|,
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where {B0(z) := B(z) − zB(1), 0 ≤ z ≤ 1} is the Brownian bridge with the standard Brownian motion
B(·).

Its proof is drawn in Section 6. Now the following remark explains that the arguments of Jureckova
and Picek (2001) can be applied in the case of weakly dependent sequences due to the existence of
the phantom distribution function.

Remark 1. As mentioned above, in the case of iid random variables with cdf F(x), the threshold
sequence a = (nN1−δ)1/m0 for 0 < δ < 2/3 has been chosen by Jureckova and Picek (2001) so that
(2.5) holds in hypothesis xm0 (1 − F(x)) ≥ 1 for sufficiently large x. In this present work we adopt
the same threshold so that (2.5) holds for the following reason: Recall that the empirical version of
P(X(n),s ≤ x) is given by F̂N,n(x) in (2.4). If random variables are iid then P(X(n),s ≤ x) = F(x)n,
while if {Xt} is a stationary and weakly-dependent sequence in this work, the equality does not hold.
However, we can approximate using a phantom distribution function. By Proposition 1 (see Doukhan
et al., 2015), a continuous phantom distribution function G(·) exists such that

P(X(n),s ≤ un) −Gn(un)→ 0 as n→ ∞,

for every sequence {un} and thus we have approximation F̂N,n(un)−G(un)n → 0 as n→ ∞, and we may
say that F̂N,n(x) is also the empirical version of G(x)n. For just simplicity, we consider Mn := X(n),1
and for fixed x, write

P(Mn ≤ x) = P (Xi ≤ x for all i = 1, 2, . . . , n) =
n∏

j=1

P
(
A j|D j−1

)
=:

n∏
j=1

g j(x),

where A j = {X j ≤ x}, D j−1 = {Xi ≤ x, i = 1, 2, . . . , j − 1} for j = 1, 2, . . . , n with D0 sample
space, and g j(x) = P(A j|D j−1). For a given sequence un, we have

∏n
j=1 g j(un) −G(un)n → 0, G(un) −∏n

j=1 g j(un)1/n → 0 as n → ∞. Thus we may regard G(x) as asymptotically geometric mean of
conditional cdfs {g j(x) : j = 1, 2, . . . , n}, and thus (2.3) holds for G replaced in F and we have
xm0 (1−G(x)) ≥ 1 for sufficiently large x. Therefore, by the same argument as in Jureckova and Picek
(2001) replaced by G, which plays a role as F asymptotically on pp. 177–178, in the proof of their
Theorem 2.1, (2.5) with the selected threshold a = (nN1−δ)1/m0 follows from the fact that F̂N,n(x) is
approximated by G(x)n for sufficiently large x as n→ ∞.

As a specific model of the ψ-weakly dependent process, we deal with a GARCH process and a
simulation study is given in the next two sections.

3. GARCH(1, 1) model

In this section, we consider a GARCH(1, 1) process to present a simulation study for the proposed
CUSUM tests. The GARCH process {Xt : t ∈ Z} is given by

Xt =
√

htεt, ht = ω + αX2
t−1 + βht−1, (3.1)

where {εt : t ∈ Z} are iid random variables with zero mean and unit variance, ω > 0, α ≥ 0, and β ≥ 0.
Here a sufficient condition is given for the asymptotic result of the CUSUM statistics in the case of
GARCH(1, 1) processes: On behalf of the stationarity of GARCH(1, 1) model, we assume α + β < 1;
in addition, the following are added for our main result of Theorem 1 in the GARCH(1, 1) processes:
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(A1)′ The GARCH parameters satisfy E log(β + αε2
1) < 0;

(A2)′ The noise process {εt : t ∈ Z} has the absolutely continuous distribution and its cdf has a
bounded density.

Condition (A1)′ is for the strict stationarity of the GARCH process under the null hypothesis. The
strict stationarity along with the bounded density in (A2)′ imply the concentration assumption in (A2).
Two conditions (A1)′ and (A2)′ imply conditions (A1) and (A2) as well as ensure the existence of the
phantom distribution function for the GARCH process. We discuss these details as follows. Assume
that h0 = 1. Straightforwardly we have the identity:

ht = ω ·
1 + t−1∑

i=1

t−i∑
j=1

(
β + αε2

t− j

) + t−1∏
i=0

(
β + αε2

i

)
and the GARCH(1, 1) model (3.1) can be expressed as Xt = H(εt, εt−1, . . .) for some function H.

This implies that the GARCH(1, 1) process is a Bernoulli shift with innovation {εt : t ∈ Z}. For
the function H, we can express the following weak dependence property: The sequence {dr : r ∈ Z}
defined by

dr := E
∣∣∣∣H (εt− j : j ∈ Z

)
− H
(
εt− jI{| j| ≤ r} : j ∈ Z

)∣∣∣∣
converges to zero as r tends to infinity. According to Lemma 3.1, p. 25, of Dedecker et al. (2007),
(see Ango Nze and Doukhan (2004)), it follows that the GARCH process is η-weakly dependent with
the weak dependence coefficient η(r) ≤ 2d[r/2]. Thus the stationary GARCH(1, 1) process satisfies
condition (A1). Also, because it is a Bernoulli shift with iid innovation process {εt} which has a
bounded density, say f , under conditions (A1)′–(A2)′, then concentration assumption (A2) holds
with b = 1 and c = supx f (x) in (2.8). In conclusion, under conditions (A1)′–(A2)′, the GARCH(1, 1)
process admits a continuous phantom distribution and Theorem 1 holds for the GARCH model.

4. A Monte-Carlo study

Now we present simulations for the proposed CUSUM tests to see the size and power performances.
We consider GARCH(1, 1) models (3.1) with several noises {εt}. Some pairs of normal, t(1), t(2),
Cauchy, and (two-sided) Pareto distributions are employed for the noises in GARCH(1, 1) models.
The GARCH (1, 1) models and their volatilities with ht = 0.1 + 0.3X2

t−1 + 0.2ht−1 of size Nn = 1000
are generated and depicted in Figure 1, with two changed noise distributions for t = 1, 2, . . . , 1000
where noises are changed at time t = 501. The left plots of Figure 1 depict the GARCH models and
the right depict the volatilities. We see that there exist changes in distributions at the center.

Table 1 gives the numerical illustration for values of the test statistics sup0≤z≤1 |T̂N(z)| of simulated
sample of the GARCH (1, 1) model with N = 100, n = 10, δ = 0.25 and with m0 = 1.00, 1.25,
1.50, . . . , 2.75, 3.00 and compares those in the GARCH(1, 1) models with two cases of the absence/
presence of noise changes. Table 1, the values of sup0≤z≤1 |T̂N(z)| are small in most distributions with
no changes, whereas those are somewhat larger in cases with two changed innovations.

Finite sample size and power properties of the proposed CUSUM tests sup0≤z≤1 |B̂N(z)| in Theorem
1 are investigated in stationary GARCH(1, 1) models with ht = 0.1 + 0.05X2

t−1 + 0.9ht−1 for nominal
levels 5%; sample size 800, 1200; N = 200; n = 4, 6; δ = 0.25, 0.50; 1000 replications, as seen in
Tables 2–3, respectively, where we see that reasonable sizes and powers are reported.
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Figure 1: GARCH(1, 1) models and their volatilities with two changed innovations.

Table 1: Simulated test statistics sup0≤z≤1 |T̂N(z)| with ht = 0.1 + 0.3X2
t−1 + 0.2ht−1

m0 Normal t(1) t(2) Cauchy Pareto N + t(1) N + C N + P t(2) + C t(2) + P
1.00 0.0998 0.4596 0.0981 1.4273 0.0 1.4669 2.9695 1.7541 1.4378 1.3734
1.25 0.0999 0.1745 0.1945 1.2267 0.0 1.8400 2.3199 1.6881 1.7785 1.0353
1.50 0.0996 0.4235 0.0998 0.8843 0.0 1.5763 2.4109 2.0522 1.6138 1.2572
1.75 0.0995 0.6771 0.1866 1.0368 0.0 1.9319 2.6258 1.4158 1.3595 1.4746
2.00 0.0998 0.4112 0.2407 1.0507 0.0 1.9406 3.1334 1.8647 1.8917 1.5973
2.25 0.0991 0.1749 0.3150 0.7745 0.0 2.1645 3.7539 1.8528 1.7461 1.1337
2.50 0.0997 0.3782 0.2420 0.7692 0.0 1.9278 2.9041 1.6773 2.0532 1.8058
2.75 0.0994 0.3857 0.1525 0.3469 0.0 1.9457 3.3271 1.7049 1.6039 0.3581
3.00 0.0993 0.0574 0.3995 0.8770 0.0 2.0149 3.3641 1.9841 1.7784 1.1438

N = 100, n = 10, δ = 0.25; N = Normal, C = Cauchy, P = Pareto.

As a real data application, the proposed CUSUM tests are applied to log-return sets of the Korean
stock price index (KOSPI). We adopt financial data from KOSPI-C (Construction) and KOSPI-F (Fi-
nance) between 08–02–2013 and 08–27–2017. Figure 2 provides the plots of the financial real data
and their standardized log-returns.

For δ = 0.25, 0.5, the CUSUM test statistics sup0≤z≤1 B̂N(z) of KOSPI-C and KOSPI-F are reported
in Table 4 with m0 = 2.00, 2.25, 2.50, . . . , 4.25, 4.50. Note that the critical values of the standard
Brownian bridge for 1% and 5% are 1.5174 are 1.2238, respectively. Using these values, as seen in
Table 4 with δ = 0.25, we reject the null hypotheses for KOSPI-C for m0 ∈ {2.00, 2.25, . . . , 3.25}
for both cases n = 5, 10 and for both 1%, 5% level tests; therefore, we can conclude that there exist
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Table 2: Size of 5% level tests in GARCH(1, 1) model with ht = 0.1 + 0.05X2
t−1 + 0.9ht−1

Noise N ∗ n n δ
m0

distribution 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

t(1)
800 4 0.25 0.040 0.043 0.052 0.059 0.046 0.051 0.055 0.050 0.052

0.50 0.053 0.046 0.046 0.056 0.047 0.047 0.047 0.054 0.050

1200 6 0.25 0.012 0.009 0.016 0.010 0.008 0.008 0.021 0.011 0.011
0.50 0.007 0.012 0.016 0.010 0.011 0.013 0.010 0.011 0.014

t(2)
800 4 0.25 0.049 0.066 0.061 0.066 0.065 0.064 0.055 0.074 0.056

0.50 0.052 0.045 0.064 0.066 0.052 0.063 0.071 0.060 0.062

1200 6 0.25 0.080 0.079 0.082 0.076 0.077 0.081 0.077 0.090 0.086
0.50 0.084 0.080 0.085 0.083 0.086 0.083 0.078 0.074 0.078

Cauchy
800 4 0.25 0.064 0.066 0.076 0.059 0.073 0.057 0.057 0.061 0.064

0.50 0.076 0.062 0.065 0.065 0.055 0.067 0.072 0.073 0.076

1200 6 0.25 0.083 0.094 0.076 0.068 0.092 0.070 0.081 0.092 0.082
0.50 0.082 0.082 0.073 0.084 0.081 0.071 0.085 0.097 0.080

Pareto
800 4 0.25 0.081 0.050 0.091 0.098 0.081 0.057 0.054 0.064 0.057

0.50 0.065 0.040 0.046 0.080 0.071 0.054 0.068 0.072 0.057

1200 6 0.25 0.067 0.076 0.079 0.056 0.075 0.064 0.092 0.047 0.112
0.50 0.113 0.092 0.117 0.068 0.077 0.085 0.085 0.100 0.093

sample size = 800, 1200; N = 200; n = 4, 6; δ = 0.25, 0.5; number of replications = 1000.

Table 3: Power of 5% level tests in GARCH(1,1) model with ht = 0.1 + 0.05X2
t−1 + 0.9ht−1

Noise N ∗ n n δ
m0

distribution 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

800 4 0.25 1.000 1.000 0.997 0.989 0.984 0.979 0.968 0.932 0.916
t(2)+ 0.50 0.999 0.994 0.984 0.974 0.957 0.929 0.916 0.897 0.882
Pareto 1200 6 0.25 1.000 0.995 0.997 0.997 0.974 0.962 0.938 0.935 0.912

0.50 0.998 0.993 0.986 0.963 0.952 0.933 0.890 0.866 0.839

800 4 0.25 1.000 0.996 0.997 0.994 0.981 0.990 0.952 0.955 0.925
t(2)+ 0.50 0.999 0.993 0.984 0.975 0.957 0.929 0.917 0.897 0.882

Cauchy 1200 6 0.25 1.000 1.000 0.998 0.993 0.986 0.973 0.958 0.937 0.914
0.50 1.000 0.987 0.970 0.985 0.943 0.925 0.893 0.867 0.833

800 4 0.25 0.852 0.759 0.664 0.600 0.508 0.455 0.432 0.402 0.351
Cauchy + 0.50 0.724 0.633 0.546 0.450 0.429 0.371 0.324 0.275 0.289

Pareto 1200 6 0.25 0.893 0.785 0.704 0.592 0.555 0.487 0.489 0.399 0.372
0.50 0.774 0.669 0.590 0.496 0.425 0.401 0.331 0.296 0.260

800 4 0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Normal + 0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pareto 1200 6 0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

sample size = 800, 1200; N = 200; n = 4, 6; δ = 0.25, 0.5; number of replications = 1000.

changes of tail behaviors of log-returns of KOSPI-C on those indices m0. Also we reject the null
hypotheses for KOSPI-F for m0 ∈ {2.00, 2.25, . . . , 4.00}. Thus there exists changes of tail index of
log-returns of KOSPI-F from a value in (0, 4] to that in (4,∞) for both cases n = 5, 10 and for both
1%, 5% level tests. However, if δ = 0.5 then different results are reported as n = 5 and as n = 10.
Therefore we need to refine the threshold a = (nN1−δ)1/m0 by finding optimal ratio of n to N or optimal
δ. This discussion will remain for a further study along with the estimation problem.

5. Concluding remarks

We have proposed a class of CUSUM tests for tail behavior of the weakly-dependent processes.
CUSUM test statistics are constructed using empirical distribution functions with sample extremes
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Figure 2: Financial data of KOSPI and their log-returns. (a), (c): KOSPI-Construction data and log-returns; (b),
(d): KOSPI-Finance data and log-returns.

Table 4: Computed test statistics sup0≤z≤1 |B̂N(z)| for (standardized) log-returns of KOSPI-Construction and
KOSPI-Finance

δ = 0.25 δ = 0.5
m0 KOSPI-C KOSPI-F KOSPI-C KOSPI-F

n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

2.00 2.2357 3.1586 2.2340 3.1590 2.2309 3.1622 2.2356 3.1616
2.25 2.2356 3.1600 2.2356 3.1599 2.2321 3.1572 2.2325 3.1570
2.50 2.2318 3.1586 2.2343 3.1588 2.2318 3.1576 2.2355 3.1617
2.75 2.2347 3.1617 2.2347 3.1605 0.2934 3.1604 2.2350 3.1621
3.00 2.2341 3.1571 2.2355 3.1613 0.3034 0.4094 2.2347 3.1615
3.25 2.2339 3.1601 2.2353 3.1622 0.3017 0.4112 0.2617 3.1568
3.50 0.3057 0.3838 2.2301 3.1618 0.2296 0.4096 0.1799 0.3464
3.75 0.3014 0.3970 2.2327 3.1603 0.1862 0.3057 0.2195 0.2378
4.00 0.2986 0.4042 2.2344 3.1597 0.1961 0.2620 0.1909 0.2320
4.25 0.2956 0.4044 0.2627 0.3609 0.2034 0.2673 0.1827 0.2809
4.50 0.2758 0.3505 0.1774 0.2523 0.1821 0.2755 0.1824 0.2528

sample size = 1000; n = 5, 10; δ = 0.25, 0.5.

and its limiting distribution is derived to be a Brownian bridge. Powers and sizes are computed to see
the performance of CUSUM tests via simulations. Also real data analysis is given. From the analysis
of our CUSUM tests it might be possible to estimate the tail index of the weakly dependent time
series models. The estimation needs refinements of the test statistics, to find the optimal m0, along
with optimal parameters such as δ, q and the optimal ratio of n to N. Future studies should investigate
this estimation problem by means of CUSUM test statistics and compare with the existing tail-index
estimates such as the Hill estimator. Furthermore, some empirical applications can be obtained when
the CUSUM test and estimation are conducted on the tail index of a weakly dependent return data
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set. For instance, using a change point detection based on CUSUM tests, both the tail index itself and
its change point are estimated; subsequently, the value-at-risk (VaR) or volatility forecasting are then
computed. One way to calculate VaR or volatility forecasting in the presence of tail change is to use
different weights on periods of changed tail behavior like exponential smoothing. Such methodology
on empirical applications will be discussed in a further study.

6. Proof

In order to prove Theorem 1 we need to state the following proposition that is related to the existence
of the phantom distribution function of the weakly dependent process with conditions (A1)–(A2)
under the null hypothesis. In case of α-mixing, according to Theorem 6 of Doukhan et al. (2015), p.
711, the process admits a continuous phantom distribution function. For other cases, their Theorems
7–9 are summarized by the following proposition under conditions (A1)–(A2).

Proposition 1. (Doukhan et al., (2015), Theorems 7–9 and Remark 10 on p. 715) Let {Xt} be a
stationary sequence with continuous marginals satisfying (A1) and (A2). For ψ ∈ {ψθ, ψη, ψκ, ψλ} with
the corresponding ϵ ∈ {θ, η, κ, λ}, if {Xt} is (ϵ,M, ψ)-weakly dependent and fulfills ϵ(r) = O(r−β) for
some β > 0, then it admits a continuous phantom distribution function of G(·) such that

P
(
max
1≤t≤n

Xt ≤ un

)
−Gn(un)→ 0

as n→ ∞ for every sequence {un} ⊂ R.

Proof of Theorem 1:: By the consistency of the estimator in (2.7) it suffices to show that for 0 ≤ z ≤
1, T̂N(z)

d−→ σB0(z) as N → ∞ and n→ ∞. For a = (nN1−δ)1/m0 , recall F̂N,n(a) = (1/N)
∑N

s=1 I(X(n),s ≤
a) and note that E[F̂N,n(a)] = P(X(n),1 ≤ a) and by (2.6)

lim
N→∞

N Var
[
F̂N,n(a)

]
= lim

N→∞
Var
[√

NF̂N,n(a)
]
= σ2.

According to Proposition 1, there exists a function G(·) such that for each s = 1, 2, . . . ,N, P
(
X(n),s ≤ a

)−
Gn(a) → 0 as n → ∞. The stationarity of the process under the null H0 ensures that for each
s, the phantom distribution functions cannot be too different and must be tail equivalent. Thus we
may adopt one equivalent phantom distribution function as G such that the cdf of X(n),s is approx-
imated by Gn(·). Therefore, we see that {Xt} has asymptotic independence of maxima (AIM) rel-
ative to the sequence {a = aN}, (O’Brien, 1987) of s1 , s2, as n → ∞, P(X(n),s1 ≤ a, X(n),s2 ≤
a) − P(X(n),s1 ≤ a)P(X(n),s2 ≤ a) = G2n(a) − Gn(a)Gn(a) + o(1) → 0, where it is used that two sets
{X(n),s1 ≤ a, X(n),s2 ≤ a} and {X(2n),s1,s2 ≤ a} are equivalent, with X(2n),s1,s2 = max{X(s1−1)n+1, X(s1−1)n+2,
. . . , Xs1n, X(s2−1)n+1, X(s2−1)n+2, . . . , Xs2n}, and thus P(X(n),s1 ≤ a, X(n),s2 ≤ a) − G2n(a) = o(1). See
Theorem 3.1 and its proof of Jakubowski (1991) for a similar arguments.

Let U(n),s = I(X(n),s ≤ a) − Gn(a) for s = 1, 2, . . . ,N. Then Cov
(
U(n),s1 ,U(n),s2

) → 0 for s1 , s2,
and thus by the CLT of weakly dependent sequence it follows that as N → ∞ and n→ ∞,

1
√

N

N∑
s=1

U(n),s
d−→ N

(
0, σ2
)
,

noting that its asymptotic mean and asymptotic variance are zero and σ2, respectively. Also, note that

F̂N,n(·) is a consistent estimator of Gn(·) with satisfying
√

N[F̂N,n(a)−Gn(a)]
d−→ N(0, σ2) as N → ∞
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and n→ ∞. Thus under the null H0 we may use the FCLT to show that

1
√

N

[Nz]∑
s=1

U(n),s −
[Nz]

N

N∑
s=1

U(n),s

 d−→ σ(B(z) − zB(1)) = σB0(z)

for 0 ≤ z ≤ 1. The left hand side is

1
√

N

[Nz]∑
s=1

{
I(X(n),s ≤ a) −Gn(a)

} − [Nz]
N

N∑
s=1

{I(X(n),s ≤ a) −Gn(a)}
 ≡ T̂N(z).

Therefore the desired result is obtained. �
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