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Abstract
In this survey, we use the normal linear model to demonstrate the use of the linear Bayes method. The

superiorities of linear Bayes estimator (LBE) over the classical UMVUE and MLE are established in terms of
the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator (obtained by the
MCMC method) the proposed LBE is simple and easy to use with numerical results presented to illustrate its
performance. We also examine the applications of linear Bayes method to some other distributions including
two-parameter exponential family, uniform distribution and inverse Gaussian distribution, and finally make some
remarks.

Keywords: linear Bayes method, MCMC method, MSEM criterion, normal linear model, two-
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1. Introduction

The linear Bayes method was originally proposed by Hartigan (1969), which suggests that in Bayesian
statistics one can replace a completely specified prior distribution by an assumption with just a few
moments of the distribution. It has been subsequently discussed by Rao (1973) from linear opti-
mization viewpoint. Lamotte (1978) later develops a class of linear estimators, called Bayes linear
estimators, by searching, among all linear estimators that have least average total mean squared error.
Goldstein (1983) considers the problem of modifying the linear Bayes estimator for the mean of a
distribution of unknown form using a sample variance estimate. Heiligers (1993) studies the relation-
ship between linear Bayes estimation and minimax estimation in linear models with partial parameter
restrictions. Hoffmann (1996) proposes a well-described subclass of Bayes linear estimators for the
unknown parameter vector in the linear regression model with ellipsoidal parameter constraints and
obtains a necessary and sufficient condition to ensure that the considered Bayes linear estimators im-
proves the least squared estimator over the whole ellipsoid regardless of the selected generalized risk
function. In the framework of empirical Bayes, Samaniego and Vestrup (1999) and Pensky and Ni
(2000) respectively construct linear empirical Bayes estimators and establish their superiorities over
standard and traditional estimators. In application fields, Busby et al. (2005) proposes the applica-
tion of Bayes linear methodology to uncertainty evaluation in reservoir forecasting. Zhang and Wei
(2005) also drive the unique Bayes linear unbiased estimator of estimable functions for the singular
linear model. Wei and Zhang (2007) employs linear Bayes procedure to define Bayes linear minimum
risk estimation in a linear model and discusses its superiorities. Recently, Zhang et al. (2011, 2012)
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extend the research on a linear Bayes estimator to the partitioned linear model and multivariate linear
models, respectively.

In this paper, along the same line as in Wang and Singh (2014), we use the normal linear model
as an example to demonstrate how to apply a linear Bayes method to simultaneously estimate all the
parameters involved in the model and elaborate advantages and potential disadvantages.

Let W be a known p-dimension subspace of Rn. Suppose that we observe the random vector

Y ∼ Nn

(
µ, σ2In

)
, µ ∈ W, σ2 > 0. (1.1)

This model is called the normal linear model as defined by Arnold (1980) and adopted by many
other authors as well. Let X be a basis matrix for W. Then X is an n × p matrix of rank p, and there
exists a unique β ∈ Rp such that µ = Xβ. Hence, an equivalent version of the normal linear model can
be presented, and we observe the random vector

Y ∼ Nn

(
Xβ, σ2In

)
, β ∈ Rp, σ2 > 0. (1.2)

Define β̂ = (X′X)−1X′Y and σ̂2 = (||Y ||2 − ||Xβ̂||2)/(n − p) and note that the fact that (β̂, σ̂2)
is a complete sufficient statistic for the above linear model. Hence, the classical estimators for the
parameters β and σ2 are β̂ and σ̂2, which are the uniformly minimum variance unbiased estimator
(UMVUE) in the sense of minimizing mean squared error.

From the Bayesian viewpoint, note that in most cases past experience about the parameters β and
σ2 are often available. Let f0(β, σ2) be the joint prior of β and σ2 and the loss function be

L
(
θ̂, θ

)
=

(
θ̂ − θ

)′
D

(
θ̂ − θ

)
, (1.3)

where D is a positive definite matrix and θ̂ denotes the estimate of the vector θ = (β′, σ2)′. Then, by
virtute of the Bayes theorem, the usual Bayes estimators (UBE) for β and σ2, say β̂UB and σ̂2

UB, can
be calculated by

β̂UB =

∫ ∫
βg

(
β, σ2|y

)
dβdσ2,

σ̂2
UB =

∫ ∫
σ2g

(
β, σ2|y

)
dβdσ2, (1.4)

where g(β, σ2|y) denotes the conditional joint posterior density of β and σ2 given Y . However, it is dif-
ficult to handle complicated or non-standard integrations. Normally, in these cases approximate Bayes
estimators are suggested such as Lindley’s approximation and Tierney and Kadane’s approximation,
see Lindley (1980) and Tierney and Kadane (1986) for details. Simulation-based methods such as the
Gibbs sampling procedure and Metropolis method also have emerged in the past twenty years, see
Martinez and Martinez (2007). Traditional Bayes estimators (UBE) are somewhat complicated and
inconvenient to use in these situations.

In the following, enlightened by Rao (1973), we employ the linear Bayes method to propose
a linear Bayes estimator (LBE) for the parameters β and σ2 simultaneously as well as investigate
superiorities. We also extend our discussions on the application of linear Bayes method to some other
useful distributions.

The survey is organized as follows: In Section 2 we define the LBE for the parameter vector
θ = (β′, σ2)′ and establish it superiorities over the classic UMVUE and MLE. Numerical compar-
isons between the LBE and the usual Bayes estimator (UBE) are presented in Section 3. Extended
discussions and remarks are made in Section 4.
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Throughout this paper, for two nonnegative definite matrices A1 and A2 of the same size, we say
A1 ≥ A2 if and only if A1 − A2 is a nonnegative definite matrix.

2. Linear Bayes Estimator and Its Superiorities

2.1. The proposed LBE

Denote θ = (β
′
, σ2)′. In what follows we assume that the prior G(θ) belongs to the distribution family:

G =
{
G(θ) : E

[
||β||2 +

(
σ2

)2
]
< ∞

}
. (2.1)

Put T = (β̂
′
, σ̂2)′ and define the linear Bayes estimator (LBE) of θ, say θ̂LB, be of the form

θ̃ = BT + b satisfying

R
(
θ̂LB, θ

)
= min

B,b
E(Y,θ)L

(
θ̃, θ

)
and E(Y,θ)

(
θ̂LB − θ

)
= 0, (2.2)

where align and b are (p+1)×(p+1) and (p+1)×1 undetermined matrices respectively, E(Y,θ) denotes
the expectation with respect to the joint distribution of Y and θ and the loss function is given by (1.3).

Thus, we have the following conclusion.

Theorem 1. Let θ̂LB be defined by (2.2). If n ≥ p + 1, then

θ̂LB = T −W[W + Cov(θ)]−1(T − Eθ),

where W = E[Cov(T |θ)] = diag((X′X)−1Eσ2, 2Eσ4/(n − p)).

Proof: From the constraint E(Y,θ)(θ̃ − θ) = 0, we know b = Eθ − BE(Y,θ)(T ). Note that

E(Y,θ)(T ) = E[E(T |θ)] = E(β′, σ2)′ = Eθ. (2.3)

Hence b = Eθ − BEθ, and accordingly we have

R
(
θ̃, θ

)
= E(Y,θ)L

(
θ̃, θ

)
= E(Y,θ)[BT + Eθ − BEθ − θ]′D[BT + Eθ − BEθ − θ]
= E(Y,θ)

{
tr

(
D[B(T − Eθ) − (θ − Eθ)] [B(T − Eθ) − (θ − Eθ)]′

)}
= tr

(
DE(Y,θ)[B(T − Eθ) − (θ − Eθ)][B(T − Eθ) − (θ − Eθ)]′

)
= tr

(
DBE(Y,θ)

[
(T − Eθ)(T − Eθ)′

]
B′

) − tr
(
DCov(θ)B′

) − tr(DBCov(θ)) + tr(DCov(θ)). (2.4)

For given θ, using the independence between β̂ and σ̂2, we have

E(Y,θ)
[
(T − Eθ)(T − Eθ)′

]
= E[Cov(T |θ)] + Cov(E(T |θ))
= W + Cov(θ), (2.5)

where W = diag((X′X)−1Eσ2, 2Eσ4/(n − p)).
Substituting (2.5) into (2.4) and letting ∂R(θ̃, θ)/∂B be zero, we have

DB[W + Cov(θ)] − DCov(θ) = 0,
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which yields

B = Ip+1 −W[W + Cov(θ)]−1. (2.6)

Together with b = Eθ − BEθ we come to the conclusion of Theorem 1. �

Remark 1. In the definition of θ̂LB (2.2), if we discard the so-called unbiased constraint E(Y,θ)(θ̂LB−
θ) = 0, then by directly computing R(θ̃, θ) and denoting ∂R(θ̃, θ)/∂B = 0 and ∂R(θ̃, θ)/∂b = 0, we can
obtain the same expression for the LBE θ̂LB, which means that θ̂LB satisfies the unbiased condition as
well as performs best among linear Bayes estimators in the sense of minimizing E(Y,θ)L(BT + b, θ).

2.2. The superiorities of LBE

Note that

θ̂U =
(
β̂′, σ̂2

)′
=

(
Ip 0
0 1

) (
β̂
σ̂2

)
= T, (2.7)

where we use θ̂U to denote the UMVUE of θ = (β′, σ2)′.

Theorem 2. Let θ̂LB and θ̂U be given by (2.2) and (2.7) respectively. If n ≥ p+1, then θ̂LB is superior
to θ̂U in terms of MSEM criterion, i.e. MSEM(θ̂LB) ≤ MSEM(θ̂U).

Proof: Since E(Y,θ)(θ̂LB − θ) = 0, we have

MSEM
(
θ̂LB

)
= E(Y,θ)

[(
θ̂LB − θ

) (
θ̂LB − θ

)′]
= E

[
Cov

(
θ̂LB − θ|θ

)]
+ Cov

(
E

[
θ̂LB − θ|θ

])
. (2.8)

Denote M = [W + Cov(θ)]−1. Then by Theorem 1 we know

MSEM
(
θ̂LB

)
= (I −WM)W(I −WM)′ +WMCov(θ)(WM)′

= (I −WM)W(I − MW) +WMCov(θ)MW

= W − 2WMW +WM[W + Cov(θ)]MW

= W −WMW. (2.9)

However,

MSEM
(
θ̂U

)
= E(Y,θ)

[(
θ̂U − θ

) (
θ̂U − θ

)′]
= E

{
E

[(
θ̂U − θ

) (
θ̂U − θ

)′ ∣∣∣∣θ]}
= E

{
E

[
(T − θ)(T − θ)′|θ]}

= W. (2.10)

Comparing (2.9) with (2.10), we have

MSEM
(
θ̂LB

)
≤ MSEM

(
θ̂U

)
. (2.11)

The proof of Theorem 2 is completed. �
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Moreover, note that the MLE of θ, denoted by θ̂ML, equals to B0T with

B0 =

(
Ip 0
0 n−p

n

)
. (2.12)

Thus,

MSEM
(
θ̂ML

)
= B0WB′0 +

(
B0 − Ip+1

)
E

(
θθ′

) (
B0 − Ip+1

)′
=

 X′X
Eσ2 0
0 n2

(2n+p2−2p)Eσ4

−1

. (2.13)

Theorem 3. Let θ̂LB and θ̂ML be given by (2.2) and (2.12) respectively. If n ≥ p + 1, then θ̂LB is
superior to θ̂ML in terms of MSEM criterion, i.e. MSEM(θ̂LB) ≤ MSEM(θ̂ML).

Proof: We rewrite

MSEM
(
θ̂LB

)
= W −WMW =

[
W−1 + Cov−1(θ)

]−1

=

 X′X
Eσ2 0
0 n2

(2n+p2−2p)Eσ4

 + (
0 0
0 c0

)
+ Cov−1(θ)

−1

, (2.14)

where c0 = (np2 − 4np − p3 + 2p2)/{2(2n + p2 − 2p)Eσ4}.
Hence, in order to establish the MSEM superiority of θ̂LB over θ̂ML, it suffices to show that(

0 0
0 c0

)
+ Cov−1(θ) ≥ 0, (2.15)

for n ≥ p + 1.
Denote Cov−1(θ) = S , where S = (S i j) is a 2 × 2 partition matrix and

S 11 = Cov−1(β) + Cov−1(β)E
(
σ2 − Eσ2

)
(β − Eβ)S 22E

(
σ2 − Eσ2

)
(β − Eβ)′Cov−1(β),

S 12 = −Cov−1(β)E
(
σ2 − Eσ2

)
(β − Eβ)S 22,

S 21 = − S 22E
(
σ2 − Eσ2

)
(β − Eβ)′Cov−1(β),

S 22 =
[
Var

(
σ2

)
− E

(
σ2 − Eσ2

)
(β − Eβ)′Cov−1(β)E

(
σ2 − Eσ2

)
(β − Eβ)

]−1
. (2.16)

Thus, to prove (2.15), it is adequate to show that∣∣∣S 11
∣∣∣ ∣∣∣∣c0 + S 22 − S 21

(
S 11

)−1
S 12

∣∣∣∣ ≥ 0, (2.17)

or equivalently to show that

c0 + S 22 − S 21
(
S 11

)−1
S 12 ≥ 0, (2.18)

for n ≥ p + 1, where we use the fact of S 11 ≥ 0 and accordingly the value of the determinant |S 11| is
nonnegative.
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Set ∆ = Var(σ2) − E(σ2 − Eσ2)(β − Eβ)′Cov−1(β)E(σ2 − Eσ2)(β − Eβ) and note that S 11 =

Cov−1(β)[Cov(β) + E(σ2 − Eσ2)(β − Eβ)(1/∆)E(σ2 − Eσ2)(β − Eβ)′]Cov−1(β), hence we have

c0 + S 22 − S 21
(
S 11

)−1
S 12 = c0 +

1
∆
− 1
∆

E
(
σ2 − Eσ2

)
(β − Eβ)′

×
[
Cov(β) + E

(
σ2 − Eσ2

)
(β − Eβ)

1
∆

E
(
σ2 − Eσ2

)
(β − Eβ)′

]−1

× E
(
σ2 − Eσ2

)
(β − Eβ)

1
∆
. (2.19)

Further, using [Σ + AΣ1A′]−1 = Σ−1 − Σ−1A[A′Σ−1A + Σ−1
1 ]−1A′Σ−1, we have

c0 + S 22 − S 21
(
S 11

)−1
S 12 = c0 +

1
∆
− a
∆2 +

a2

(∆ + a)∆2 , (2.20)

where a = E(σ2 − Eσ2)(β − Eβ)′Cov−1(β)E(σ2 − Eσ2)(β − Eβ).
Note that ∆ = Var(σ2) − a, hence

1
∆
− a
∆2 +

a2

(∆ + a)∆2 =
1

Var(σ2)
, (2.21)

and accordingly

c0 + S 22 − S 21
(
S 11

)−1
S 12

= c0 +
1

Var
(
σ2)

=

[
(n + 4)p2 − (4n + 4)p − p3 + 4n

]
Eσ4 +

[
4np − (n + 2)p2 + p3

] (
Eσ2

)2

2
(
2n + p2 − 2p

)
Var

(
σ2) Eσ4

≥

[
2p2 + 4n − 4p

] (
Eσ2

)2

2
(
2n + p2 − 2p

)
Var

(
σ2) Eσ4 > 0, for n ≥ p + 1, (2.22)

where we use the facts that Eσ4 ≥ (Eσ2)2 and (n + 4)p2 − (4n + 4)p − p3 + 4n ≥ 0 for n ≥ p + 1.
Hence, Theorem 3 has been proved. �

Remark 2. For the two-parameter exponential family given by

f (x; µ, λ) = λ−1 exp
( x − µ
λ

)
,

where x > µ, we assume that X(1) ≤ X(2) ≤ · · · ≤ X(r)(2 ≤ r ≤ n) denote the type II censored
samples. Define Qi = [n − (i − 1)](X(i) − X(i−1)), where X(0) = 0, then Q1 and P =

∑r
i=2 Qi are

mutually independent and also (Q1, P) is sufficient for the parameter vector (µ, λ). Set T = (Q1, P)′,
the classical UMVUE and MLE for θ = (µ, λ)′ can be defined as follows

θ̂U =

( 1
n

−1
n(r−1)

0 1
r−1

)
T, θ̂ML =

( 1
n 0
0 1

r

)
T.
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Under the assumption that the prior G(θ) satisfies the condition E||θ||2 < ∞, we can obtain the
expression of LBE θ̂LB for the parameter vector θ = (µ, λ)′ in this case and establish its superiorities
over the θ̂U and θ̂ML by virtue of MSEM criterion similarly. The interested readers are referred to
Wang and Singh (2014) for more details.

Remark 3. Let X1, X2, . . . , Xn be independently drawn from the uniform distribution U(θ1, θ2) with
density f (x; θ1, θ2) = (θ2 − θ1)−1, where θ1 < x < θ2. Note that X(1) = min1≤i≤n Xi and X(n) =

max1≤i≤n Xi are sufficient and complete statistics, hence, set T = (X(1), X(n))′, we obtain the classic
UMVUE and MLE for θ = (θ1, θ2)′ in this case:

θ̂U =

 n
n−1

−1
n−1

−1
n−1

n
n−1

 T, θ̂ML =

(
1 0
0 1

)
T.

Similarly, using the assumption that the prior G(θ) satisfies the condition E||θ||2 < ∞, the ex-
pression of LBE θ̂LB for the parameter vector θ = (θ1, θ2)′ can be easily obtained and its MSEM
superiorities over the θ̂U and θ̂ML can also be proved.

Remark 4. Let X1, X2, . . . , Xn be a random sample from the two-parameter inverse Gaussian distri-
bution IG(α1, α2) with pdf

f (x;α1, α2) =
(
α2

2πx3

) 1
2

exp
−α2(x − α1)2

2α2
1x

 ,
where x > 0. It is easily shown that the statistics X̄ = (1/n)

∑n
i=1 Xi and S̄ = n/{∑n

i=1(1/Xi − 1/X̄)}
are sufficient and complete. Tweedie (1957) shows that X̄ and S̄ are independent, X̄ having an inverse
Gaussian distribution with parameters α1 and nα2, and nα2/S̄ having a χ2

n−1 distribution. Schwarz and
Samanta (1991) gives a proof of these facts using an inductive argument. Hence we obtain the classic
UMVUE and MLE for the parameter θ = (α1, α2)′ as follows

θ̂U =

(
1 0
0 n−3

n

)
T, θ̂ML =

(
1 0
0 1

)
T,

where T = (X̄, S̄ )′. Assume that the prior G(θ) belongs to the prior family G = {G(θ) : E[α2
1 + α

2
2] <

∞, E[α3
1α
−1
2 ] < ∞}, we can obtain the expression of LBE θ̂LB for the parameter vector θ = (α1, α2)′

and prove that it prevails over the classic UMVUE and MLE under MSEM criterion.

2.3. An illustration example

To illustrate Theorem 2 and Theorem 3 we investigate the case of two-dimensional normal linear
model, i.e.

Y ∼ N
(
β0 + β1x, σ2In

)
, (2.23)

where we assume that (β0, β1)′ ∼ N((1, 2)′,Cov(β0, β1)) with Cov(β0, β1) having three alternative val-
ues and σ2 ∼ U(a, b) with three different pairs a and b. We also assume that (β0, β1) and σ2 are uncor-
related, i.e. Cov(β0, β1, σ

2) = diag(Cov(β0, β1),Var(σ2)), and x = (−4, −3, −2, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16).
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Table 1: IP(θ̂U ) and IP(θ̂ML) under different priors and sample sizes

Priors n IP
(
θ̂U

)
IP

(
θ̂ML

)
tr

(
Cov

(
β0, β1, σ

2
))(

β0
β1

)
∼ N

((
1
2

)
,

(
1 1

3
1
3 1

))
5 0.9712 0.9542

10 0.9516 0.9404 7/3
σ2 ∼ U(7, 9) 20 0.9066 0.8974(

β0
β1

)
∼ N

((
1
2

)
,

(
6 2
2 6

))
5 0.9234 0.8779

10 0.8803 0.8524 40/3
σ2 ∼ U(6, 10) 20 0.7706 0.7480(

β0
β1

)
∼ N

((
1
2

)
,

(
18 6
6 18

))
5 0.8458 0.7537

10 0.7265 0.6627 124/3
σ2 ∼ U(4, 12) 20 0.5369 0.4961

Define the percentages of improvement of θ̂LB over θ̂U and θ̂ML, respectively, by

IP
(
θ̂U

)
=

tr
(
MSEM

(
θ̂U

)
−MSEM

(
θ̂LB

))
tr

(
MSEM

(
θ̂U

)) and IP
(
θ̂ML

)
=

tr
(
MSEM

(
θ̂ML

)
−MSEM

(
θ̂LB

))
tr

(
MSEM

(
θ̂ML

)) .

For different sample size n (= 5, 10, 20), the corresponding computation results for IP(θ̂U) and
IP(θ̂ML) under the three different priors are presented in Table 1, where tr(Cov(β0, β1, σ

2)) is used as
an index of the variation of the prior information.

As stated in Theorems 2 and 3, since the above priors belong to the family (2.1), both MSEM(θ̂U)−
MSEM(θ̂LB) and MSEM(θ̂ML) −MSEM(θ̂LB) are always nonnegative definite. From Table 1, firstly
we can see that when the sample size n is fixed, as expected, both IP(θ̂U) and IP(θ̂ML) decrease as
the variation of the prior increases (i.e, tr(Cov(β0, β1, σ

2)) tends to be larger); secondly, for the same
prior information, it is only natural that as the sample size n grows, which means that the sample
information gets more, both IP(θ̂U) and IP(θ̂ML) decrease; finally, it seems that IP(θ̂U) is larger than
IP(θ̂ML), the reason may be due to MSEM(θ̂U) ≥MSEM(θ̂ML) for our case.

3. Numerical Comparisons between LBE and UBE

For the model (1.2), note that under the loss L(θ̂, θ) and the prior G(θ), the usual Bayes estimator
(UBE) of θ, say θ̂UB, would be equal to E(θ|Y). In this Section, for given priors G(θ), we present some
numerical comparisons between the LBE θ̂LB and the UBE θ̂UB, the latter is calculated by employing
an MCMC sampling method.

Suppose p = 2 and let us consider the normal linear model

Y ∼ N
(
γ0 + γ1x, σ2In

)
. (3.1)

Denote β = (γ0, γ1)′. We assume that σ2 follows an inverse-Gamma distribution with density

π
(
σ2; λ0, t

)
=

tλ0−1

Γ(λ0 − 1)

(
1
σ2

)λ0

exp
(
− t
σ2

)
and given σ2 the conditional distribution of β is N2(β̃0, σ

2Σ0).
Note that the posterior density of (β, σ2) given Y is

f
(
β, σ2|y

)
∝

(
σ−2

)λ0+1+ n
2 exp

{
− 1

2σ2

[
2λ0 + (n−2)σ̂2 +

(
β−β̃0

)′
Σ−1

0

(
β−β̃0

)
+

(
β−β̂

)′
X′X

(
β−β̂

)]}
,
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where X′ =
(

1 1 · · · 1
x1 x2 · · · xn

)
denotes the design matrix.

However, it is almost impossible to calculate θ̂UB = (β̂′UB, σ̂
2
UB)′ analytically, so we have to obtain

it numerically.
Note that the posterior conditional densities of β given σ2 and σ2 given β are respectively propor-

tional to

f1
(
β|σ2, y

)
∝ exp

{
− 1

2σ2

(
β − β̃

)′
Σ̃−1

(
β − β̃

)}
, (3.2)

f2
(
σ2|β, y

)
∝ σ−2(λ0+1+ n

2 ) exp
(
− c1

2σ2

)
, (3.3)

where β̃ = (Σ−1
0 + X′X)−1(Σ−1

0 β̃0 + X′Xβ̂) , Σ̃ = σ2(Σ−1
0 + X′X)−1 and c1 = 2λ0 + (n − 2)σ̂2 + (β −

β̃0)′Σ−1
0 (β − β̃0) + (β − β̂)′X′X(β − β̂).

The Gibbs sampler was originally developed by Geman and Geman (1984) as applied to image
processing and the analysis of Gibbs distributions on a lattice. It is brought into mainstream statistics
through the articles of Gelfand and Smith (1990) and Gelfand et al. (1990). The Gibbs sampler can
also be shown to be a special case of the Metropolis-Hastings algorithm, see Gilks et al. (1996) and
Robert and Casella (1999). In describing the Gibbs sampler, we follow the treatment in Casella and
George (1992).

Step 1. Choose the initial values of β and σ2 and denote the values of β and σ2 at the jth step by β j

and σ2
j , respectively.

Step 2. Generate β j+1 and σ2
j+1 from f1(β|σ2

j , y) and f2(σ2|β j, y), respectively.

Step 3. Repeat Step 2 for N times.

Step 4. Calculate the Bayes estimator of l(β, σ2) by 1/(N − m0)
∑N

j=m0+1 l(β j, σ
2
j ), where l(β, σ2) de-

notes any a function of β and σ2 and m0 is the burn-in period.

Note that under the above priors, it is readily seen that Eθ = (Eβ
′
, Eσ2)′ = (β̃

′

0, t/[λ0 − 2])′

and Cov(θ) = diag(t/(λ0 − 2) · Σ0, t2/{(λ0 − 2)2(λ0 − 3)}) since Cov(β) = ECov(β|σ2) = Σ0Eσ2 and
Corr(β, σ2) = 0.

In the following table we first calculate the values of θ̂LB and the corresponding numerical results

of θ̂UB for different prior parameters and then present ||θ̂LB − θ̂UB|| =
√
||β̂LB − β̂UB||2 + (σ̂2

LB − σ̂2
UB)2,

which is defined as an index of degree of approximation between θ̂LB and θ̂UB.
The above numerical comparisons indicate two trends, one is that for the same prior, ||θ̂LB − θ̂UB||

tends to be smaller as sample size gets larger, the other is that given sample size, ||θ̂LB− θ̂UB|| increases
as the prior variance becomes larger. In the process of simulation, we find that the value of ||θ̂LB− θ̂UB||
is affected by the value of (σ̂2

LB − σ̂2
UB)2; however, the value of ||β̂LB − β̂UB||2 is always small, which

means the LBE β̂LB is rather close to the UBE β̂UB and there could be a certain difference between the
LBE σ̂2

LB and the UBE σ̂2
UB for our cases.

Remark 5. Two cases are considered for the two-parameter exponential family. In case (I) we
assume that the parameters µ and λ have independent prior distributions, where µ follows an expo-
nential distribution and λ has an inverted Gamma prior. In case (II), we suppose that, given λ, the
conditional prior of µ is an inverted Gamma density and λ follows an inverted Gamma prior. For the
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Table 2: ||θ̂LB − θ̂UB|| under different prior parameters and sample sizes

n The prior parameters ||θ̂LB − θ̂UB||

λ0 = 2, t = 3, β̃0 =

(
−2
3

)
, Σ0 =

(
1 0.7

0.7 1

)
1.3369

20 λ0 = 2, t = 4, β̃0 =

(
−2
3

)
, Σ0 =

(
5 3.5

3.5 5

)
1.4472

λ0 = 2, t = 8, β̃0 =

(
−2
3

)
, Σ0 =

(
20 14
14 20

)
1.8390

λ0 = 2, t = 3, β̃0 =

(
−2
3

)
, Σ0 =

(
1 0.7

0.7 1

)
1.0589

50 λ0 = 2, t = 4, β̃0 =

(
−2
3

)
, Σ0 =

(
5 3.5

3.5 5

)
1.1407

λ0 = 2, t = 8, β̃0 =

(
−2
3

)
, Σ0 =

(
20 14
14 20

)
1.4855

Where (x1, x2, . . . , x20) is a subset of (x1, x2, . . . , x50) = (−4 3.4 2.4 0 1 2 3 4 3.5 0.6 7 8 9 10 11 12 −1.9 14 15
16 17 18 19 21 22 23 34 35 −13 17 18.5 19.9 24 28 32 33 37 39 −12 −16 −19 44 45 23.4 31.7 33.5 45.2
60.7 −14.3 −17).

above two cases, numerical simulations show that ||θ̂LB− θ̂UB||s are small, which means that as a linear
approximation of θ̂UB, θ̂LB works better.

Remark 6. In the case of the uniform distribution U(θ1, θ2), numerical computations show that θ̂LB

works very good for both independent prior and non-independent prior. For example, for the single
parameter uniform distribution U(0, θ2), we assume the prior π(θ2) has finite second-order moment
and mimic the above discussions, then the LBE for the parameter θ2 is θ̂2,LB = a0X(n) + b0 with

a0 =
(n + 1)(n + 2)Var(θ2)

(n + 1)2Eθ22 − n(n + 2)(Eθ2)2
and b0 =

[(1 − a0)n + 1]Eθ2
n + 1

.

Specifically, let π(θ2) = tt1
2 θ2

−t1−1 exp(−t2/θ2)/Γ(t1) and together with f (x(n)|θ2) and the squared loss,
we know that the UBE θ̂2,UB is

E(θ2|x(n)) =

∫ ∞
x(n)
θ2
−t1−n exp (−t2/θ2) dθ2∫ ∞

x(n)
θ2
−t1−n−1 exp (−t2/θ2) dθ2

=
t2

t1 + n − 1

P
(
χ2(2(t1 + n − 1)) ≤ 2t2/x(n)

)
P

(
χ2(2(t1 + n)) ≤ 2t2/x(n)

) ,
where we utilize the relationship between the inverse Gamma and the χ2 distribution (Mao and Tang,
2012). Say, let n = 5, x(n) = 2 and t1 = 3 and t2 = 8, simple computations show that a0 = 1.1351,
b0 = 0.2163 and P(χ2(14) ≤ 8) = 0.1107 and P(χ2(16) ≤ 8) = 0.0511. Hence, we have θ̂2,LB = 2.4865
and θ̂2,UB = 2.4758, which show that the LBE is very close to the UBE.

Remark 7. For the two-parameter inverse Gaussian distribution IG(α1, α2), similarly, numerical
studies show that LBE is adequate.

Remark 8. In above simulation, it should be noted that the problem of deciding when to stop the
chain is an important issue and is the topic of current research in MCMC methods. If the resulting
sequence has not converged to the target distribution, then the estimators and inferences we get from
it are suspect. Let γ represent the characteristic of the target distribution (mean, moments, quantiles,
etc.) in which we are interested. An obvious method to monitor convergence to target distribution is
to run multiple sequences of the chain and plot γ versus the iteration number.
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4. Conclusions and Remarks

This paper uses the normal linear model Y ∼ N(Xβ, σ2In) as an example to investigate the application
of linear Bayes method, where we employ the linear Bayes method to simultaneously estimate regres-
sion parameter β and the variance parameter σ2 as well as propose a linear Bayes estimator for the
parameter vector θ = (β

′
, σ2)′. The proposed linear Bayes estimator is shown superior to the classical

estimators UMVUE and MLE, respectively, in terms of the mean squared error matrix criterion. Nu-
merical simulations are presented to verify the validity of the linear Bayes estimator. The procedure
used in this paper includes normal distribution as its special case and can be extended easily to other
useful distributions (such as log-normal, inverse Gaussian distribution and two-parameter exponen-
tial family), which are frequently used parametric lifetime models in survival analysis and reliability
theory. We also discuss and remark the applications of linear Bayes method to the two-parameter
exponential family, uniform distribution and the inverse Gaussian distribution. Compared with the
usual Bayes estimator, we find that

(1) The proposed linear Bayes estimator is simple and easy to calculate as well as a good approxi-
mation in many situations; the linear Bayes method works especially well for the case of uniform
distribution.

(2) We can always define a linear Bayes estimator if there exists sufficient statistic for the parametric
model; subsequently, the conclusions of Theorems 2 and 3 always hold.

However, an advantage of the usual Bayes estimator over the linear Bayes estimator is that the
former allows for noninformative (improper) priors. Of note is that the linear Bayes estimator may
be an inadequate approximation in some situations even for the cases of proper priors. Hence there
is still scope for the linear Bayes method to be improved. For instance, for some cases a quadratic
Bayes estimator would be a better alternative. However, for the case of normal linear model, one can
consider to add more other statistics into the definition of T , for example, we can replace T = (β̂

′
, σ̂2)′

by T1 = (β̂
′
, ||β̂||2, σ̂2)′ or T2 = (β̂

′
, σ̂2, σ̂4)′ to redefine a new linear Bayes estimator. We note that the

loss function often plays an important role in Bayesian analysis; consequently, some interesting loss
functions such as the balanced loss and the linex loss can be integrated with the linear Bayes method
in future studies.
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